
The Simple Times
TM

THE QUARTERLY NEWSLETTER OF SNMP TECHNOLOGY, COMMENT, AND EVENTS

VOLUME 9, NUMBER 1 DECEMBER, 2001

The Simple Times is an openly-available publication
devoted to the promotion of the Simple Network Man-
agement Protocol. In each issue, The Simple Times
presents technical articles and featured columns, along
with a standards summary and a list of Internet re-
sources. In addition, some issues contain summaries of
recent publications and upcoming events.

In this Issue:

Applications, Tools, and Operations
Editorial . 1
SNMP Set: Can it be saved? 2
Discovery of Spanning Trees in Virtual Bridged

LANs . 3
Westhawk’s SNMP Stack in Java 10
Reality Check: IETF meets Network Operators . 13

Featured Columns
Four Engineers and a Troublemaker 14

Miscellany
Standards Summary 15
Open Source News 19
Recent Publications 19
Calendar and Announcements 20

Publication Information 20

The Simple Times is openly-available. You are free
to copy, distribute, or cite its contents; however, any
use must credit both the contributor and The Simple
Times. (Note that any trademarks appearing herein are
the property of their respective owners.) Further, this
publication is distributed on an “as is” basis, without
warranty. Neither the publisher nor any contributor
shall have any liability to any person or entity with
respect to any liability, loss, or damage caused or alleged
to be caused, directly or indirectly, by the information
contained in The Simple Times.

The Simple Times is available as an online journal in
HTML, PDF and PostScript. New issues are announced
via an electronic mailing list. For information on sub-
scriptions, see page 20.

Editorial
Aiko Pras, University of Twente

Jürgen Schönwälder, University of Osnabrück

The year 2001 has been one of the more silent years
in the SNMP history. But sometimes silence is a good
thing, especially if it is not caused by a lack of activity.
Quite some work has been done in 2001 to progress core
technology documents and to complete or revise several
MIB modules.

Work on SNMPv3 is reaching completion as the spec-
ifications are currently progressing through the IESG
approval process to become a full Internet Standard.
The publication of the SNMPv3 specifications as Inter-
net Standards is expected to happen in 2002 and it might
go hand in hand with an action to classify SNMPv1
as Historic. Of course, such an IESG action does not
immediately impact all the widely deployed SNMPv1
implementations. SNMPv1 implementations will stay
with us for many more years. But still, classifying
SNMPv1 Historic sets a clear signal that SNMPv3 has
become the stable SNMP version of the future and
people are safe in deploying SNMPv3 implementations
in large scales.

The IETF standard for extensible agents (RFC 2741,
RFC 2742) has been elevated to Draft Standard in
December 2001. The AgentX specifications are some of
the few documents that manage to progress in the IETF
standardization process without any changes to the
RFCs. This is even more impressive since the working
group collected 13 implementation and interoperability
reports.

The MIB module for Differentiated Services, another
milestone in the set of IETF MIBs, has been approved
for publication as Proposed Standard in November 2001.
Work on this MIB involved the cooperation of several
subject matter experts since the automated configura-
tion of routers supporting the differentiated services
architecture is frequently used to demonstrate policy-
based configuration management schemes.

It is good to see that the core SNMP technology has
reached stability again after a lengthy period of several
competing versions in the 1990s. The SMIv2 data
definition language is a full Internet Standard since
1999 and it is expected that the SNMPv3 protocol is

The Simple Times 2

published as a full Internet Standard in 2002. This gives
the industry a stable technology to create new products
and network operators a stable base for their future de-
ployment decisions. On the other hand, every successful
living technology also needs a controlled evolutionary
path forward to address new requirements and to adapt
to changes in the environment. It is thus not surprising
that the IETF has started two new working groups:

• The Evolution of SNMP working group (EOS) fo-
cuses on the evolution of the protocol operations.

• The Next Generation Structure of Management In-
formation working group (SMIng) focuses on the
evolution of the data definition language.

The SMIng working group has produced a document
which discusses the objectives of the SMIng work. This
document was published as RFC 3216 in December.

SNMP Set: Can it be saved?
Andy Bierman, Cisco Systems

There are many factors preventing the SNMP command
responder application interface from displacing the com-
mand line interface (CLI) as the primary configuration
mechanism for network devices. Some of the issues have
been raised on the SNMP WG mailing list in the past,
but were largely ignored at the time. Not all of the
issues are directly related to SNMP or the SMI, and
not surprisingly, the most important factor is money.
SNMP agent code costs too much to develop, test, and
maintain, compared to the equivalent CLI code. The
complex SNMP set state machine and the overhead
of lexicographic sorting are the worst problem areas,
usually much more (five to ten times?) expensive to
develop than CLI code. In order for SNMP to succeed
as a configuration management interface, development
costs must be competitive with the CLI, while offering
significantly more value to developers than the CLI. This
should be possible, since the CLI is primarily a human
interface and does not provide many important features
of a programmatic interface, such as stability, detailed
command semantics, or compliance and conformance
information.

The problem starts with the API definition itself –
the SMIv2 information module. CLI specifications are
easier to define than MIBs because there are not nearly
as many documentation requirements and modification
rules. SMIv2 syntax is not straightforward, widely
understood, or easy to learn. Furthermore, SNMP has
no real transaction semantics, which means input and
output parameters to commands are modelled as data
elements (i.e. MIB objects).

So why are SNMP configuration objects so expensive
to develop compared to the equivalent CLI configuration
commands? Simply put, the CLI accepts input at an
appropriate granularity (one command at a time) while
SNMP accepts input at an inappropriate granularity
(one parameter at a time). This applies to row creation
as well as row modification.

SNMP set PDUs may contain an arbitrary number
of (potentially unrelated) arbitrarily partial commands,
and the agent is expected to accept individual parame-
ters, not complete commands. The partial “commands-
in-progress” have to be processed “best-effort”, as if an
entire set of parameters existed, and then saved as MIB
objects, so these parameters can be retrieved by an NMS
in subsequent read operations.

The agent cannot simply store partial commands until
they are complete, because some parameters have “act
now” semantics and others have “act on activation”
semantics (e.g. bufferControlMaxOctetsRequested from
the RMON-MIB (RFC 2819) is an “act-now” param-
eter while bufferControlChannelIndex is an “act-on-
activation” parameter, both defined in the same table).

The requirement to accept partial input is most com-
plicated if some parameters are inter-related, which is
usually the case. The set PDU logic for such MIB objects
can be quite complicated, as well as the selection of
appropriate default values for missing parameters. For
example, if an agent supporting the DISMAN-PING-MIB
(RFC 2925) received a set PDU containing only one
varbind for a pingCtlTargetAddressType object (syntax
InetAddressType) set to dns(16), then the agent has to
select an arbitrary value for the pingCtlTargetAddress
object, which is supposed to be a DNS name.

One work-around for this problem is for the MIB de-
signer to place as many essential parameters as possible
in the INDEX clause. This is problematic from a MIB
design perspective, since OBJECT IDENTIFIERs are lim-
ited to 128 sub-identifiers and the INDEX clause implies
uniqueness across all its parameters. From an agent im-
plementation perspective, this technique simply trades
set PDU complexity for lexicographic sorting complex-
ity. For an management system developer, editing an
existing row becomes more complex because parameters
in the INDEX clause cannot simply be changed, but rather
the entire row must be deleted and re-created with a
new index value. This can sometimes cause disruptive
behavior on the device as well.

The CLI allows only one command at a time to be
input, instead of an arbitrary mix of commands. If
essential parameters are missing, the entire input is
rejected as a syntax error, rather than accepted as
partial input. These two simple restrictions make the
development and testing of CLI code relatively trivial,

VOLUME 9, NUMBER 1 DECEMBER, 2001

The Simple Times 3

compared to SNMP.
CLI does not need the createAndWait state, because it

uses a reliable stream-oriented transport (e.g. TCP) and
it has a “line continuation” mechanism. Fragments from
the same command are simply cached by the CLI parser
until the final fragment is received, and then the entire
command is parsed, as if it was received all at once. The
CLI has the robust createAndGo mechanism that SNMP
needs.

Even if SNMP development costs are lowered, there is
an unrelated factor which hinders any potential CLI re-
placement. Network operators rely on the configuration
file as a concise, readable representation of all settings
for a device, and therefore consider it to be the “native
language” representation of the device itself. These files
are usually formatted in plain ASCII so they can be
examined and edited with even the most basic tools. In
some cases, rather complex tools are used to generate
and manage device configurations automatically. In
many products, the non-volatile (and network) storage
of device configuration data is in “CLI representation”,
which implies that only settings which are supported
by the CLI interface can be restored after a reboot, or
archived to an external storage device.

But the SNMP set can be “fixed”. If the agent accepted
input in a manner that is consistent with the CLI, then
agent development costs could be dramatically lowered,
and much more instrumentation code could be shared
between SNMP and CLI access mechanisms.

First, MIB designers need to keep writable objects
simple and aligned with CLI access granularity by
only defining objects with “act-on-activation” instead of
“act-now” behavior. The practice of designing SNMP
command responders to accept any arbitrarily partial
input must end. It must be acceptable for an agent to re-
ject otherwise valid SNMP set PDUs because too many
different commands are combined in the same PDU, or
not enough parameters for a particular command are
contained in the same PDU. The complex RowStatus
states (i.e. createAndWait and notInService) need to be
deprecated, and no longer used in new standard MIBs.

Then SNMP can be aligned with the CLI with some
relatively minor enhancements to the SMI and SNMP.
New standards under development in the SMIng and
EOS working groups can provide enough new features to
simplify the SNMP set implementation requirements.
The new data definition language from the SMIng WG
can provide enough machine-parseable semantics to
convey the expected parameter granularity for basic
functions, such as class creation, modification, and dele-
tion. The new row-based (should really be class-based)
operations from the EOS WG can potentially provide a
mechanism in the protocol to allow an SNMP engine to

reject partial input to the command responder applica-
tion in a generic manner. Input could also be generically
presented to the command responder in groups instead
of individual elements. This can simplify the parameter
validation logic and allow for better agent code re-use
and more sophisticated automatic code generation tools.

The complex and nested containment provided by
SMIng classes, combined with class-based operations
and “RowStatus Lite” from EOS, could allow SNMP
tool and engine developers to greatly simplify the agent
software development environment. Lower development
costs will increase the likelihood that new devices will
ship with an SNMP interface in addition to the (default)
CLI interface.

Discovery of Spanning Trees in
Virtual Bridged LANs

Meng Guo, Georgia Institute of Technology
Subrata Mazumdar, Avaya Labs

Virtual Local Area Network (VLAN) capabilities are
nowadays an integral feature of switched LAN solutions
provided by LAN equipment vendors [1, 2]. VLANs
facilitate easy administration of logical groups of sta-
tions on different LAN segments as if they were on
the same LAN segment. A virtual bridged LAN [3, 4]
consists of one or more VLAN-aware bridges and allows
the definition, creation and maintenance of the VLANs.
All the bridges within a bridged LAN environment par-
ticipate in a spanning tree over which multiple VLANs
can coexist. One of the challenges of VLAN deployment
is the degree to which VLAN configuration is automated.
The first step towards automatic VLAN configuration is
the discovery of the initial configuration of the bridges,
the spanning tree operated over the bridges and the
mapping from the spanning tree to the VLAN topology.
There can be multiple instances of spanning trees over
a set of bridges. The operation of the spanning tree
is transparent to bridges as well as external manage-
ment applications, and the spanning tree information
is distributed over all the bridges in the bridged LAN.
Reconstruction of the spanning tree and discovery of the
mapping between the spanning tree and the VLAN is
central to the management of bridged LANs.

Many bridge vendors provide VLAN management
tools, but these tools usually only work for their own
devices since they make use of vendor specific MIB
modules. In some cases, the bridges do not even fully im-
plement the IETF BRIDGE-MIB (RFC 1493). In addition,
some vendor supplied tools are end-user applications
that are to be used only by human network adminis-
trators. No programming APIs or information models

VOLUME 9, NUMBER 1 DECEMBER, 2001

The Simple Times 4

and class libraries are supplied in these tools for new
application development. Even when APIs are supplied
[5], these APIs tend to be device centric and they are
not based on logical entities such as VLANs or spanning
trees. Furthermore, generic SNMP-based management
platforms are not capable of discovering the relationship
between the MIB objects because that would require
customized processing of the MIB variables related to
the BRIDGE-MIB.

The main goal of our spanning tree discovery project
is to create a vendor-neutral tool to discover the bridges
and spanning trees using only SNMP and standard MIB
modules, such as RFC1213-MIB (RFC 1213), BRIDGE-MIB
(RFC 1493), and Q-BRIDGE-MIB (RFC 2674). The scope
of our bridge discovery is limited to bridges that support
the BRIDGE-MIB. As a result, our discovery excludes other
layer two devices such as hubs or bridges that do not
support the BRIDGE-MIB.

Since different vendors have different implementa-
tions of MIB modules [2], we have created a vendor-
neutral information model for the bridged LAN based
on the standard MIB modules, and at the same time,
provide a mediation layer framework and tools for map-
ping between the vendor specific MIB modules and the
standard MIB modules. In addition to the discovery
of bridges, VLANs and the associated spanning trees
(STs), we wanted to build a set of reusable Java class
libraries with a well defined information model and
interfaces for logical entities that span multiple devices
in a bridged LAN. We need a better information model
than device centric MIB modules for bridges because
relationships between bridges are maintained implicitly
through bridge addresses used by the spanning tree
protocol (STP). Our discovery tool is the first step in
our implementation of Java class libraries that will
establish the relationship between bridges and provide
navigation capabilities from one node of the spanning
tree to another. In the future, we will extend the
class libraries with capabilities for adding, changing, or
removing station membership.

The key contribution of this article is a description
how STP bridge addresses can be associated with IP
addresses and an algorithm to build the ST by querying
standard MIB modules for bridges. If the standard MIB
modules related to bridges are not supported, then we
provide a mapping between vendor specific MIB modules
and standard MIB modules for the bridges.

Virtual Bridged LANs: Concepts and Definition

A virtual bridged LAN [3, 4, 6, 7] consists of one or
more VLAN-aware bridges and allows the definition,
creation and maintenance of Virtual Local Area Net-

works (VLANs). A VLAN is a proper subset of the active
topology of a bridged local area network. Each VLAN is
associated with a VLAN identifier (VID). When packets
from two different VLANs transit a common link, a tag
is prepended to the frame that contains the VID and the
priority (tagged frames). On links that have only one
VLAN, tagging is optional. VLAN-aware bridges or end
stations recognize and support VLAN-tagged frames. A
VLAN can be implemented in any bridged LAN environ-
ment that supports IEEE 802 LAN MAC protocols [3]
and over shared media LANs as well as point-to-point
LANs. The bridges forward unicast, multicast, and
broadcast traffic only on LAN segments that serve the
VLAN to which the traffic belongs. Typically, a router
is used to move traffic from one VLAN to another. All
bridges within a bridged LAN environment participate
in a spanning tree over which multiple VLANs can
coexist [3, 4, 8]. The primary reason for running a
spanning tree is to eliminate loops in a bridged infras-
tructure and to provide redundant paths, which can be
unblocked upon failure. Although the VLAN standard
[4] specifies a single spanning tree for all VLANs, there
is a choice to be made as to how many spanning trees
operate in a VLAN environment and how the VLANs in
that environment map to those spanning trees. Vendor
dependent implementations vary in whether there is
one spanning tree for each VLAN or whether multiple
VLANs map to a spanning tree.

Switch
(Floor 2)

Switch
(Floor 1)

Switch
(Floor 3)

Router
(Building)

VLAN 1 VLAN 2 VLAN 3

Figure 1: Typical VLAN configuration.

A virtual LAN allows a group of stations to communi-
cate as if they were on the same physical LAN segment.
The stations could be connected to different ports of
the same switch or to ports on different bridges. A
VLAN allows a network manager to logically segment
a LAN into different broadcast domains (see Figure 1).
Since this is a logical segmentation and not a physical
one, workstations do not have to be physically located
together. Users on different floors of the same building,

VOLUME 9, NUMBER 1 DECEMBER, 2001

The Simple Times 5

or even in different buildings can now belong to the same
logical LAN. VLANs can be spanning across different
physical network environments, such as ATM, Ethernet,
Token Ring or FDDI networks.

There are several criteria by which VLAN member-
ship can be defined [2, 4]:

• By port: Each port on a bridge belongs to one
VLAN. All traffic within the VLAN is switched, and
traffic between VLANs is routed (by an external
router or by a router within the switch). This
type of VLAN is also known as a segment-based
VLAN. Figure 1 illustrates a set of VLANs based
on port-based grouping where one port from each
bridge belongs to a different VLAN. The IP packets
between the VLANs are exchanged through the
router. This is the membership criterion supported
by the IEEE/IETF MIB modules.

• By MAC address: The traffic from a specific end
station is put into a specific VLAN based on the
MAC address of the network interface card in the
end station.

• By network address: VLANs based on network ad-
dresses can differentiate between different layer-3
protocols, allowing the definition of VLANs to be
made on a per-protocol basis. Routing between
VLANs comes automatically, without the need for
an external router or card. Network address-based
VLANs will mean that a single port on a switch can
support more than one VLAN. This type of VLAN is
also known as a virtual subnet VLAN.

• By IP multicast groups: All workstations that join
an IP multicast group can be seen as members of the
same virtual LAN. However, they are only members
of a particular multicast group for a certain period
of time.

In addition to the above criteria, VLANs may be ex-
tended beyond a single bridge through the use of trunk-
ing between bridges. A trunk is a point-to-point link
carrying the traffic of several VLANs. To preserve VLAN
information across the trunk, the Ethernet frames are
prepended with 802.1Q tags.

Related Work

There has been extensive work done on the discovery of
VLAN configuration. Most bridge vendors provide their
own tools for VLAN configuration and path discovery
between end points. These tools primarily depend on
proprietary discovery mechanisms for bridges.

• Avaya’s VLANMaster application in the CajunView
Suite [9] for network management is a powerful,
easy-to-use tool that helps simplify all areas of
VLAN management - from initial assignment to
moves and changes. CajunView will automatically
maintain an up-to-date view of VLANs. VLANMas-
ter only works with Avayas Cajun switches.

• Aprisma’s SPECTRUM VLAN Manager [10] al-
lows users to configure and manage their 802.1Q
switches, ports, and VLANs from a single worksta-
tion on the network using a graphical user interface.
It uses the Cabletron Discovery Protocol (CDP) to
find all CDP compatible 802.1Q switches in a do-
main by simply providing the SPECTRUM VLAN
Manager with the IP address of one of the switches
in the domain. It also allows a network administra-
tor to create, configure, and delete 802.1Q VLANs
in a domain. Once a VLAN has been created, the
administrator can easily assign it to a switch or
switch port.

• Cisco’s VlanDirector [11], which is coupled with
CiscoView, provides VLAN discovery as well as
functions for creation and management of VLANs.
VlanDirector uses the Cisco Discovery Protocol
(CDP) to discover the physical connectivity of the de-
vices in the network. VlanDirector cannot manage
any devices that do not run CDP.

• 3COM’s Enterprise VLAN Manager [12] is used
to monitor, control and automate the network by
discovering and displaying physical and logical
switched topologies and presenting views through
graphical user interfaces.

• Granite [5] is an open source C API/SDK to pro-
vision VLAN configurations using SNMP. The API
supports standard MIB modules for bridges. In
addition, the API can be used to manage layer
two filters and layer three access control lists on
Riverstone products.

Our work is closely aligned with Aprisma’s SPECTRUM
VLAN Manager and the Granite API, which are based
on IETF standard MIB modules for bridges. In addition,
we provide a vendor neutral model based on standard
MIB modules. We also provide a framework for me-
diating vendor specific MIB modules to standard MIB
modules for bridges.

Discovery of Spanning Trees and VLANs

In this section, we propose our method of spanning
tree and VLAN discovery in the virtual bridged LAN

VOLUME 9, NUMBER 1 DECEMBER, 2001

The Simple Times 6

based on the IETF standard MIB modules for bridges.
MIB modules that are used in this article are the
RFC1213-MIB (RFC 1213), the BRIDGE-MIB (RFC 1493)
and the Q-BRIDGE-MIB (RFC 2674). The discovery
method has the following steps:

• Deduce the target Virtual Bridged LAN from an
arbitrary IP address in the Virtual Bridged LAN;

• Automatically discover all the bridges in the target
Virtual Bridged LAN;

• Collect spanning tree and VLAN related MIB vari-
ables from the discovered bridges using SNMP;

• Construct the spanning trees in the Virtual Bridged
LAN and associate the spanning trees with VLANs.

According to the specification of Virtual Bridged LANs
[4], there is only one spanning tree for all the VLANs and
the object models for the BRIDGE-MIB and Q-BRIDGE-MIB
represent that recommendation. In reality, many switch
vendors support more than one spanning tree. Our
object model for spanning tree information represents
the most general case, one spanning tree per VLAN.

Our discovery method makes certain assumption
about the target bridged LAN and the MIB modules
supported in the bridges. We have used the SNMPv1
protocol to access MIB variables because the bridges
in our test network only support SNMPv1. We have
used a single community string for accessing all the
bridges in the target LAN. We have used the MIB
variables from RFC1213-MIB because of our familiarity
with this MIB module. A concise description of mapping
between RFC1213-MIB variables and the SMIv2 counter-
parts (RFC 1907, RFC 2011, RFC 2096, RFC 2863) can
be found in [13].

Deduction of Target Virtual Bridged LAN
In order to constrain the domain of the bridges in

a LAN environment, we select a bridged LAN that is
bordered by routers as the target bridged LAN. The
starting point of the whole VLAN discovery process is
an IP address of one of the hosts, routers or switches of
the target bridged LAN. We need to determine the IP
address ranges (possibly a collection of subnets) of the
target bridged LANs before the bridge discovery step. If
the initial IP address does not represent a router, we
first need to obtain the next-hop router of the given IP
address by retrieving the ipRouteNextHop variable of the
ipRouteTable. If there is more than one router address,
then we pick the address that is in the same subnet as
the given IP address.

Once we have an IP address of a router, we can find the
associated interface index by examining ipAdEntIfIndex

and we obtain all the subnets associated with the router.
For each entry in the ipRouteTable, we obtain the
ipRouteDest and ipRouteMask objects that match the
interface index and compute the IP subnet address
range using the combined value of ipRouteDest and
ipRouteMask. For example, if the starting IP address
is 135.8.29.11 and the next-hop router is 135.8.28.1, we
check the ipRouteTable in the next-hop router. There,
we will find an entry with ipRouteDest = 135.8.12.0
and a corresponding ipRouteMask = 255.255.252.0 and
the IP address range will be 135.8.12.1-135.8.16.255.
Thus, the span of our bridge discovery is the union of
all the subnet ranges computed for the interface index
associated with router’s IP address.

Auto Discovery of Bridges
The aim of automatic discovery of all the bridges is to

create a one-to-one mapping between the IP address and
MAC layer bridge address of a bridge in the target LAN
environment. The bridge address is the lowest MAC
address of the bridge used by the bridge for running the
spanning tree protocol. The IP address of the bridge
is needed because SNMP messages are sent to the IP
address of the bridge in order to get MIB information
from the bridge. On the other hand, the spanning tree
protocol is a MAC layer protocol and the information
about the parent nodes of the spanning tree is kept
in the form of bridge addresses. The only way the
information in a specific bridge can be correlated with
the information in its parent bridge (in the spanning
tree) is by mapping the bridge MAC address to an IP
address. The discovery of the bridges is accomplished
in two steps. First, we query the sysDescr object to
determine if the device on an IP address is running an
SNMP agent. Second, we query the dot1dBridgeAddress
object to see if the device is a bridge. The detailed
operations are described as below:

1. Given the computed IP address range from the
seed IP address, we send an SNMP get message to
retrieve the sysDescr variable for each IP address in
the address range. A timeout or an error response
indicates that the IP address is either not reachable
or that SNMP access is not enabled.

2. If the device on an IP address is running an SNMP
agent, then we send a second SNMP get message
to retrieve the scalar dot1dBaseBridgeAddress. If
the SNMP agent supports the BRIDGE-MIB, then the
returned value is the address of the bridge. A
noSuchName error or noSuchObject exception indi-
cates that this device is not a bridge.

If the above two steps are successful, we conclude that
the device with this IP address is a bridge. To discover

VOLUME 9, NUMBER 1 DECEMBER, 2001

The Simple Times 7

all the bridges which support the BRIDGE-MIB on the
specified IP range, we run the above two steps for every
IP address on the computed IP address ranges and then
compile a mapping between the bridge IP addresses and
corresponding bridge MAC addresses.

Collection of Spanning Tree Information
Automatic discovery of bridges generates a list of

bridges that support the STP. The STP is a distributed
protocol and each switch only maintains local STP in-
formation. The STP related information is stored in
the dot1dStpPortTable table of the BRIDGE-MIB as shown
below. For constructing the spanning tree, we are
only interested in a subset of the MIB variables of the
dot1dStpPortTable (marked below).

dot1dStpPortEntry OBJECT-TYPE
SYNTAX Dot1dStpPortEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION

"A list of information maintained by every
port about the Spanning Tree Protocol
state for that port."

INDEX { dot1dStpPort }
::= { dot1dStpPortTable 1 }

Dot1dStpPortEntry ::= SEQUENCE {
dot1dStpPort INTEGER, --
dot1dStpPortPriority INTEGER,
dot1dStpPortState INTEGER, --
dot1dStpPortEnable INTEGER,
dot1dStpPortPathCost INTEGER,
dot1dStpPortDesignatedRoot BridgeId, --
dot1dStpPortDesignatedCost INTEGER,
dot1dStpPortDesignatedBridge BridgeId, --
dot1dStpPortDesignatedPort OCTET STRING, --
dot1dStpPortForwardTransitions Counter

}

For each discovered bridge, we send one SNMP getnext
message for each row of the dot1dStpPortTable to get
the values of the marked variables. As we walk through
the table row by row, we check the dot1dStpPortState
variable of each row and discard entries whose port
state is broken. We also extract the VLANs associated
with the selected ports by retrieving dot1qPvid from
the associated entry of the dot1qPortVlanTable of the
Q-BRIDGE-MIB. Given all this information, we create
one row of our internal table for each combination of
VLAN identifier and port identifier. The columns of the
internal table are shown in Table 3. The knowledge
of the bridge address, the port identifier, the VLAN
identifier, the designated root, the designated bridge,

and the designated port are necessary and sufficient for
constructing the per-VLAN spanning tree.

Per-VLAN Spanning Tree Construction
Once the internal spanning tree information table is

built, we sort it by the VLAN identifier and the bridge
address columns so that spanning tree information for
each VLAN is in contiguous rows and ordered by the
bridge address. Then for each group of entries for
each VLAN identifier, we perform the following steps to
construct the per-VLAN spanning tree: Given a VLAN
identifier, if the VLAN identifier of an entry in the table
equals to the given value, compare the bridge address
and designated bridge. If both the bridges addresses
are the same, then skip this entry; if they are different,
perform the following operations:

1. Select the first entry from this VLANs group of
entries as the current entry.

2. If the bridge address and the designated bridge
address of the current entry are the same, then go
to step 3; otherwise perform the following steps:

• Set this bridge address as the child of the
designated bridge address of the spanning tree.

• Mark the port id of this entry as the egress port
on this bridge, and the designated bridge port
id as the ingress port of the designated bridge.

3. Select the next unvisited entry as the current entry
and go to step 2; The spanning tree is constructed
when all the entries of this VLAN identifier have
been visited.

Complexity Analysis
The analysis of the complexity of our solution is

composed of two aspects: traffic load and spanning
tree computation. In our four-phase solution, the first
three phases send SNMP packets to collect necessary
information. The fourth phase is a pure local processing
step which injects no traffic in the network.

In the automatic bridge discovery phase, assume there
are n IP addresses, and there are m bridges that support
per-VLAN spanning tree in the target LAN environ-
ment. We send at most (2n) SNMP packets to the
network in order to find m bridges among n IP addresses.
Note that the two get messages can be combined into a
single message which reduces the number of required
SNMP packets to n.

In the STP information collection phase, we assume
that there are at most l entries in the dot1dStpPortTable
for each bridge, and there are at most p entries in the
dot1qPortVlanTable. Since we need to collect only 5

VOLUME 9, NUMBER 1 DECEMBER, 2001

The Simple Times 8

BRIDGE-MIB/Q-BRIDGE-MIB PROMINET-MIB
dot1dStpPort promBridgePortIndex
dot1qPvid promBridgePortIndex, promVlanID
dot1dStpPortState promBridgePortState
dot1dStpPortDesignatedRoot promBridgePortDesignatedRoot
dot1dStpPortDesignatedBridge promBridgePortDesignatedBridge
dot1dStpPortDesignatedPort promBridgePortDesignatedPort

Table 1: Mapping between proprietary and standard MIB variables.

columns of the dot1dStpPortTable, we can send one
SNMP message for each port to get the values of the
variables. We have to get only one variable from the
dot1qPortVlanTable. Thus, we have to send out at most
(l + p) SNMP packets in order to collect spanning tree
information from each bridge.

Putting things together, the VLAN and spanning tree
discovery process needs to send out 2n+m(l+p) SNMP
packets to the network or n+m(l+p) if the first two
messages are combined into a single message. During
these initial steps, the local processing cost of storing
the data into the table is trivial compared to the sending
and receiving SNMP messages. For example, in our test
environment the values of n, m, l and p are as follows:
n=512, m=11, l=48, p=7. Thus, we have to send about
1629 SNMP messages or 1117 messages if the first two
messages are combined. The above analysis is based
on SNMPv1. If we use SNMPv2c or SNMPv3, which
support getbulk operations, we may be able to retrieve
the tables with fewer messages by packing more than
one row in SNMP responses.

As to the complexity of constructing the spanning tree,
our method is actually a scan of the table for each VLAN
identifier and then it builds the tree from bottom up, i.e.,
from leaf to the root. This algorithm can be finished in
linear time.

Experimentation and Analysis of Results

In order to test our spanning tree discovery method, we
ran a set of tests in our internal corporate network. Our
corporate network consists of a large number of Avaya
P580 Cajun bridges [14] and routers. We have restricted
the tests to a small subnet of the corporate network.

Avaya’s Cajun bridges store the STP related infor-
mation in their proprietary MIB, called PROMINET-MIB.
The Cajun switches maintain one spanning tree for
each VLAN. The PROMINET-MIB is an extension of the
BRIDGE-MIB for representing MIB objects for multiple
VLANs. The PROMINET-MIB stores spanning tree in-
formation in its promBridgePortTable. This table has
all the objects defined in dot1dStpPortTable of the
BRDIGE-MIB. The PROMINET-MIB maintains one spanning

tree for each VLAN. The promBridgePortTable is in-
dexed by a combination of the VLAN identifier and the
port identifier. In the BRIDGE-MIB only the port identi-
fiers are used to maintain the spanning tree information.

Table 1 describes the mapping of the variables of
promBridgePortTable to the standard BRIDGE-MIB. The
VLAN identifier of a port is extracted based on the
VLAN index encoded in the promBridgePortIndex. The
port identifier and the VLAN identifier are combined to
form the promBridgePortIndex. The VLAN identifier is
deduced in the following way:

• First, we retrieve the promBridgePortIndex. The
first half of this object is the VLAN bridge index, the
second half of this object is the bridge port identifier.
We extract the first half of promBridgePortIndex to
get the VLAN bridge index (promVlanBridgeIndex).

• Second, we retrieve all instances of the promVlanId
and the promVlanBridgeIndex from the vlanTable
in the PROMINET-MIB and use this information to
map the VLAN bridge index obtained in the first
step to the VLAN identifier (promVlanID) for the
corresponding bridge port.

We have implemented our algorithms using a set of
Java based applications. The initial seed IP address we
selected was 135.8.12.1 and the IP address is configured
on a router. The IP address range of the selected subnet
is 135.8.12.0-135.8.15.255.

Bridge Discovery
We have written an application called BridgePing

that, given an IP subnet, automatically discovers all
the bridges in the target address range. Running the
BridgePing program on all IP subnets computes the
mapping shown in Table 2 between IP addresses and
MAC layer addresses of the discovered bridges.

Collecting Spanning Tree Related Information
Once we have identified the bridges, we send SNMPv1

message to the bridges to build our internal table (as
shown in Table 3) in our Java application for computing
the spanning tree:

VOLUME 9, NUMBER 1 DECEMBER, 2001

The Simple Times 9

135.8.15.246

135.8.12.1

135.8.15.249

135.8.15.250 135.8.15.247

135.8.15.251

135.8.15.245

135.8.15.253

135.8.15.248

135.8.15.254

135.8.15.252

49

4949

4973

25

25

2525

49

49 49252525

1457

169
121217

Figure 2: Spanning Tree for VLAN 12 based on Table 3.

• First, we collect all the entries in the vlanTable
of the PROMINET-MIB in order to create a mapping
between VLAN identifiers and Cajun switch specific
VLAN indexes for the bridge;

• Second, we collect the STP related information
from the promBridgePortTable. All the variables
of a specific row of the table are retrieved in one
message. The VLAN index is computed from the
promBridgePortIndex and mapped to the VLAN
identifier using the information collected in the first
step. The port identifier is also computed from
promBridgePortIndex. When all the entries from
the promBridgePortTable have been collected, we
filter out those entries whose state is broken or
invalid and then build the internal table (as shown
in Table 3). The bridge address in the table is ob-
tained by mapping the IP addresses to correspond-
ing bridge MAC addresses (using the information in
Table 2).

IP Address Bridge Address
135.8.12.1 00306d3b8800
135.8.15.245 00306d67dc00
135.8.15.246 02e03b0529b3
135.8.15.247 00306d62c000
135.8.15.248 02e03b005e33
135.8.15.249 02e03bfa7800
135.8.15.250 00306d633800
135.8.15.251 02e03bdbf800
135.8.15.252 02e03bfa8000
135.8.15.253 00306d838400
135.8.15.254 00306d63b400

Table 2: Mapping IP to Bridge MAC Addresses.

Construction of Per-VLAN Spanning Tree
In Table 3, each row describes a node of the spanning

tree for a specific VLAN. The root of the spanning tree

for a VLAN is easily deduced from the Designated Root
column. The Designated Root is the same for all nodes of
a spanning tree. For a given node (bridge), the parent of
the node is obtained from the Designated Bride column.
The port identifier of this bridge is marked as egress port
and the port identifier of the parent (Designated Bridge
Port) is marked as ingress port for the parent node.

Figure 2 shows the result of a spanning tree that
is constructed based on the information in Table 3 for
the VLAN with identifier 12. The numbers below each
bridge node are ingress port identifiers and the numbers
above each bridge are egress port identifiers.

Conclusion

In this article, we propose an approach to discover
spanning trees in Virtual Bridged LANs using SNMP
MIB modules. Our work is composed of three phases.
In the first phase, we discover the bridges within a
target range of IP addresses and create a one to one
mapping between IP and bridge MAC addresses. In
the second phase, we collect the STP information from
the discovered bridges using SNMP. In the third phase,
we compute the spanning tree for each VLAN in a
bottom-up manner. We have tested our approach in our
internal networks and we verified the result.

The main advantages of our approach are:

• It adds very limited amount of traffic. Our solu-
tion obtains the VLAN configuration information
using SNMP. The number of packets we send has
a quadratic bound.

• Spanning tree construction is a pure local process-
ing step and adds no burden on the designated
network. The spanning tree construction algorithm
can be finished in linear time.

• The whole process is highly automated. Given a
starting IP address, there is no need for human

VOLUME 9, NUMBER 1 DECEMBER, 2001

The Simple Times 10

Bridge Address Vlan Port Port State Designated Root Designated Bridge Designated Port
00306d62c000 10 25 forwarding 00306d3b8800 02e03bdbf800 25
00306d62c000 12 25 forwarding 00306d3b8800 02e03bdbf800 25
00306d62c000 16 25 forwarding 00306d3b8800 02e03bdbf800 25
02e03b005e33 10 49 forwarding 00306d3b8800 00306d838400 49
02e03bfa7800 12 25 forwarding 00306d3b8800 00306d3b8800 217
00306d633800 2 25 forwarding 00306d3b8800 02e03bfa7800 49
02e03b0529b3 12 25 forwarding 00306d3b8800 00306d3b8800 73
00306d67dc00 12 25 forwarding 00306d3b8800 00306d838400 79
02e03b005e33 12 49 forwarding 00306d3b8800 00306d838400 49
00306d838400 12 49 forwarding 00306d3b8800 00306d3b8800 121
00306d633800 12 25 forwarding 00306d3b8800 02e03bfa7800 49
02e03bdbf800 12 49 forwarding 00306d3b8800 00306d3b8800 169
02e03bfa8000 12 49 forwarding 00306d3b8800 00306d63b400 49
00306d63b400 12 25 forwarding 00306d3b8800 00306d3b8800 145
. .

Table 3: Internal Table for VLANs and Spanning Trees.

interference for bridge and spanning tree discovery.
This makes the approach very easy to use.

We have completed the first step of building a ven-
dor neutral tool for VLAN configuration. Our next
step is to extend the discovery tool to implement
add/change/remove capabilities for VLAN membership
and the configuration of VLANs.

Acknowledgement

We would like to thank Mike MacFaden of Riverstone
Networks for his comments that helped us to improve
the article significantly.

References

[1] Buerger, D.J., Virtual LAN cost savings will stay
virtual until networking’s next era, Network World,
March 1995.

[2] Passmore, D., Freeman, J., The Virtual LAN Tech-
nology Report, March, 1997.

[3] IEEE 802.1D, IEEE Standard for Information
technology–Telecommunications and information ex-
change between systems–Local and metropolitan
area networks–Common Specifications–Media ac-
cess control (MAC) bridges, 1998.

[4] IEEE 802.1Q, IEEE Standard for Local and
Metropolitan Area Networks: Virtual Bridge Local
Area Networks, 1998.

[5] NMOPS, Granite: A C API/SDK to provision L2 Fil-
ter and L3 ACLs and VLANs on Riverstone Routers

[6] Hein, M., Griffiths, D., Berry, O., Switching Tech-
nology in the Local Network: From LAN to Switched
LAN to Virtual LAN, Thompson Computer Press,
February 1997.

[7] Subramanian, M., Network Management, Principles
and Practice, Addison-Wesley, 1995.

[8] Cisco Documentation, Understanding Spanning
Tree Protocol

[9] Avaya, Avaya CajunView Enterprise Network Man-
agement Systems

[10] Aprisma, SPECTRUM VLAN Manager

[11] Cisco Documentation, VlanDirector - Getting
Started Guide

[12] 3COM Documentation, Transcend Management
Software Enterprise VLAN Manager User Guide

[13] Riverstone, RS Platform SNMP Management

[14] Avaya, P580 MultiService Switch

VOLUME 9, NUMBER 1 DECEMBER, 2001

The Simple Times 11

Westhawk’s SNMP Stack in Java
Tim Panton, Westhawk

Birgit Arkesteijn, Westhawk

In 1995, the authors were working for West Consulting
BV on a SNMP agent and manager for a UPS (Uninter-
ruptable Power Supply) maker (Victron, now part of GE
Industrial Systems). It was written in ’C’ and was ported
to 13 different UNIX platforms. In a discussion with the
customer it was mentioned that the new Java platform
might make the porting/installing of the manager code
simpler in the future. The customer remarked that he
doubted that Java would be able to do the low level UDP
networking or the detailed graphics that were needed.

This was taken as somewhat of a challenge, and so
began the SNMP stack in Java described in this article.
At the same time, West were offered a chance to present
at one of Sun’s promotional JavaDays so the first version
of the stack was used as a demo at that event. It used
almost all the Java features available at the time.

The first version ran on a 16Mb 40Mhz 486 in
Netscape’s JVM so it needed to be lightweight and
simple. West were kind enough to make the stack
freeware and it was released in 1996.

The authors later moved to Westhawk Ltd in the UK.
Since that time, the SNMP stack has been extended to
encompass JavaBeans, SNMPv2c and SNMPv3, and the
performance has been improved quite a bit.

Design Decisions

The fundamental design goal was that it should be
possible to use the stack in an applet and, other things
being equal, leave it running all day. Taking that basic
goal a step or two further led to the following core design
decisions:

• No MIB knowledge. Bandwidth and memory con-
straints prevented us from reading a full MIB into
the applet. Therefore the stack could not contain a
MIB browser/parser. Any OIDs would be calculated
when creating the code, and then compiled in. Most
management applications start off by reading in a
whole MIB, parsing it and storing it in memory,
and then allow the user to type in descriptors
like sysUpTime. The applet environment was too
restricted for that to work.

• Abstract PDU base classes. In order to prevent ap-
plication code becoming littered with ’magic’ OIDs,
abstract classes for each of the basic PDU types
were created. Application coders are expected to
create MIB/domain specific sub-classes which en-
capsulate some real-world concept (like interface

throughput) and request the OIDs needed to calcu-
late that value. This was based on the observation
that very few of the displayed values on a manager
application are single MIB values - most often it
takes a few values combined to create a useful
data-point.

• No byte offsets. The C code mentioned above was
full of byte pointers which were incremented by
state machines, which are hard to follow. Java
does not support pointers, so a different approach
was needed. In essence the ASN.1/BER in a re-
ceived packet is parsed into a tree of ASN.1 objects
and only then are the SNMP rules applied to the
resulting tree. Each ASN.1 object class knows
how to decode and encode itself, thus keeping the
bit-bashing localized to a few classes.

• Multithreaded. Since Java supports threads, they
were used to try and clarify the code and improve
performance. All requests are asynchronous, and
use the Observer/Observable mechanism from the
java.util package.

• Java Bean. Later on a JavaBeans layer was added
to the package, so that visual programming en-
vironments could use the stack. These are also
asynchronous, but use the Event/Listener model.

The overall architecture is shown in Figure 1.

Application User Interface Code

Java Beans

Application Specific Code

Abstract PDUs

Protocol Stack

ASN.1

Figure 3: Westhawk’s SNMP Architecture.

Threading

To implement a SNMP manager, a timeout/retry mech-
anism to re-send packets is required. In the UNIX/C
version, this was quite untidy, since basically all the code
funneled down to a single select() statement which
monitored all the datagrams and allowed a single time-
out. Much of the complexity of the stack involved trying
to keep state across invocations of select() and in

VOLUME 9, NUMBER 1 DECEMBER, 2001

The Simple Times 12

trying to workout which PDU would need to retry next,
meaning that different requests needed to cooperate.

Java’s multi-threading allow the handling of PDUs
(requests) to be isolated from each other. A thread is
allocated to each (outgoing) request. This thread is
responsible for the timeouts/retries on that PDU and no
other. There is also a thread that listens for incoming
packets (replies) and hands them out. This results in a
loop running in each PDU thread that looks like this:

answered = false;
for (int n = 0; n < retryIntervals.length; n++) {
if (! answered){

sendme(community);
}
try{

sleep(retryIntervals[n]);
} catch (java.lang.InterruptedException e) {}

}

The answered flag is set once a matching reply PDU
is received by the listening thread. Whilst this is
simple and clear, it is inefficient and caused problems
on Windows. In particular, it creates a new thread for
every request and holds onto it longer than is needed -
until the sum of all the retry times has elapsed. This was
changed to use a thread pool, where threads are reused
once idle. Also a get-out clause was added, allowing the
loop to finish early once a reply arrived.

The performance of the stack has never been a prob-
lem. It can saturate an Ethernet on a 600Mhz Pentium
system and there are users who poll hundreds of hosts.
In fact, the only complaint in that area was about a beta
version, which due to a typo, dropped exactly half the
packets it received. It is a tribute to the design of SNMP
that this showed up as a performance problem, not as a
total failure.

SNMPv3 Support

In 2000, Westhawk was commissioned to extend the
stack to support SNMPv3. As the authors had worked
on a proof of principle implementation of SNMPv2usec
in 1996, as an extension of the ’C’ stack, we were
delighted to accept. SNMPv3 implements many of the
same mechanisms as were in the USEC draft.

As it turned out, it was not quite as simple as was
hoped. First a suitable open source set of lightweight
classes had to be found that implement the crypto-
graphic algorithms used by SNMPv3 for privacy and
authentication (DES, MD5 and SHA1). A couple of
sources were evaluated, and the code from BouncyCastle
was selected in the end.

The authors of the SNMPv3 RFCs had assumed a cer-
tain style of ASN.1 encoder and decoder, which worked in
such a way as to make it possible to replace byte ranges
in the message. As mentioned above, this SNMP stack
represents the PDU as a tree, and not as a linear array
of bytes. An attempt was made to implement SNMPv3
in that style, by replacing parts of the tree, and then
encoding it. However, this caused other problems since
the RFC requires the replacement of the contents of an
ASNSequence, not the sequence itself. The ASN object
classes had to be extended, so that they take note of their
byte offsets when encoding and decoding themselves.
These offsets are then used as markers in the (say)
outgoing byte array, and it is rewritten just before it is
sent. This goes to show that no matter how hard you try
to be independent of implementation details when you
write a specification, you still run the risk of favoring a
specific style by assuming how things will be done.

At the same time as implementing SNMPv3, support
for receiving and sending traps was also added. Both of
these required quite careful thought as to how to create
a tidy API. In both cases, the problem boiled down to
the fact that the stack is middle-ware, not a finished
product.

In the case of receiving traps, the issue is that the
manager program may not have created a context to
receive the trap. If there is a context for the trap source,
a user interface can simply add a trap listener to the
existing context. An interactive management station
might only create contexts for the devices that were
currently on the screen, while wanting to accept traps
from all the devices it can monitor. This presents a
specific problem for SNMPv3 with privacy, since the
context is used to store the authentication and privacy
keys, as well as the time-line info (of which more later...).
It was decided to create a DefaultTrapListener, as a
last resort. Applications can ask to be notified when an
’unclaimed’ trap message arrives. The application then
has to create a suitable context, which can be used to
decode the trap.

Sending a trap represents a different problem. It is
the only element of agent functionality supported so far.
SNMPv3 places additional requirements on agents in
terms of keeping three bits of data:

1. snmpEngineId - a unique identification for the agent

2. snmpEngineBoots - the total number of reboots of the
agent

3. snmpEngineTime - how long the agent has been run-
ning since the last reboot

SNMPv3 uses these to protect itself against replay
attacks. An initial implementation provided reasonable

VOLUME 9, NUMBER 1 DECEMBER, 2001

The Simple Times 13

values for these variables. However this code makes
assumptions about the environment in which it runs. So
a mechanism was added which allows programmers to
supply their own class to provide these values and which
can ensure the values are appropriate to the device.

MIBs and Beans

Over the years the user base has used the stack to
talk to a wide variety of devices and their corresponding
MIBs. Probably the most fun (and useful) was a man-
ager application which monitored the state of an ISDN
card (from Dialogic) which was running a telephone IVR
(Interactive Voice Response) system. The level of detail
in the Dialogic MIB was such that it could actually give
a sense of what was happening on each call. It tracks
the state of the DSP hardware - listening for DTMF
tones, playing a recorded message, idle etc. Icons for
each of these states were created and a simple dedicated
manager application was produced for the operations
staff to use so they could keep an eye on the system.

Others have used the stack to provide a gateway
to CORBA, to scan the Internet facing mis-configured
devices as part of a routing protocol testbench, as well
as the bread and butter tasks of monitoring the status of
routers and connections. Sadly, at least to the author’s
knowledge, no-one uses it to control a UPS!

Where possible the user base is encouraged to write
Java beans to encapsulate the key aspects of the de-
vices to be monitored. In the IVR example above, a
DialogicChannelStatusBean was created. This provides
a programmer with access to the data she needs to
provide a visual representation of the state of the device
with the minimum of exposure to SNMP. In fact the only
things she needs to know is the IP address, the port
number and the community name of the target SNMP
agent. All of the MIB specific details, OIDs, tables, etc.
are managed by the bean and not exposed to the user
interface programmer.

In order to permit the user interface programmer to
use multiple beans in her program, common resources
need to be shared. A context pool was created, so
that two beans that are talking to the same agent with
the same community name will share the socket and
communications threads. Java’s interface mechanism
was used to make the change invisible to most of the
pre-existing user base.

The downside of this method is that the person who
writes the beans has to understand the MIB, with little
or no assistance from us. Personally I tend to use an
interactive, MIB-aware, tool like Scotty to browse a new
MIB, get some sample values from a real device and then
capture the OIDs. Only then I start to code up a new

bean. This has proved hard for some beginners, since
there is quite a lot to learn all at once. Indeed, one group
uses the stack as the basis of a course in SNMP, perhaps
exactly because, at this level, it does not hide the detail
of SNMP.

Open source

From the outset the stack has been a collaborative
project, indeed the first code came from Jordan Har-
grave, not from the authors. It has been interesting
to lead such a project, but somewhat disheartening at
times. Since the stack is middleware, the view was taken
that neither the Gnu Public License, nor the Lesser Gnu
Public License were appropriate for code which might be
embedded in devices, or put on web servers in the form
of applets. Instead a ’BSD’ style license with very few
conditions is used. In retrospect it should have required
that users notify the authors of their use of the stack.
As it is, the stack is found in various places (not always
acknowledged) and the project gets no feedback from
those users about how it could be improved.

On the other hand, the team gets quite a few emails
from people with thanks and bug reports – both of which
are equally welcome, if the bug report comes with a fix!
It is always interesting to hear how people are using the
stack since this info can be used to tune new versions.
Some of the uses are unexpected and as such could
be better supported if small changes were made in the
stack. For example, there are users who poll hundreds
of agents per minute and the stack creates and destroys
many threads as a result. New I/O features in Java
1.4 may be able to reduce this churn and hence boost
performance, but if the team aren’t told, we can’t address
it.

In common with most projects of this (smallish) size,
most of the code has been written by two people with
many smaller contributions from others. In the 3
months since 6th of September 2001, the stack has
been downloaded some 1190 times, and there are some
93 email addresses on the list of individuals who are
notified whenever a new version comes out.

Future

As mentioned above we expect to use Java 1.4 features
to improve support polling of large numbers of agents.
Requests have been made to add support for agent func-
tionality. This has been investigated, but is unlikely to
happen unless someone provides some encouragement,
either in the form of code or money!

VOLUME 9, NUMBER 1 DECEMBER, 2001

The Simple Times 14

Summary

What started as a proof of concept not only proved its
point, but has turned into more than we expected! The
fact that it is lightweight, freeware and open source
means that it can be used by everyone for every purpose.
The way the stack is designed makes it straightforward
to experiment with different protocols or to extend it in
any other ways to suit your needs.

With its features, Java has proved an excellent lan-
guage for the stack. With its current development, Java
holds lots in store for the future of the stack.

Reality Check: IETF meets Net-
work Operators

Steve Feldman, Vivace Networks

Earlier this year, the Operations and Management area
directors in the IETF started a dialog between network
management protocol designers and network operators
to help in determining future directions for work in the
IETF. As part of that effort the IETF held several in-
terim meetings in conjunction with meetings of various
network operator groups.

In May 2001, a meeting was held in conjunction
with NANOG, the North American Network Operators
Group, in Scottsdale, Arizona. Similar meetings were
held in October, at the RIPE/NCC meeting in Prague,
and in November at the USENIX LISA conference in
San Diego.

It quickly became clear that although SNMP is popu-
lar for monitoring, most network operators are not using
it for device configuration. Reasons for this include lack
of vendor support, difficulty in scripting and debugging,
and the desire to use a common configuration method re-
gardless of the communication mechanism (e.g. console
port or network access.)

During the meeting with NANOG, some network op-
erators volunteered to write a document describing their
requirements for methods to configure devices in service
provider networks. This document has been posted as
an internet-draft[1], with the intention to make it an
informational RFC once it is complete and consensus has
been reached on the contents in the traditional IETF
style. The goal is to have this done before for the next
IETF meeting, in March 2002.

Some of the requirements proposed for inclusion in the
document include:

• All devices must accept an ASCII command line
interface (CLI) via the network and a console port.

• All access to a device must be possible via a com-
monly available security and authentication mech-
anism. The document will not mandate a specific
protocol, but suggest some possibilities, such as
SSH, Kerberos, and SSL.

• A common configuration language must be devel-
oped so that similar operations performed on differ-
ent vendors’ platforms will use the same command
syntax.

• It must be possible to write the entire configuration
(including default values) of a device to a text file,
which can then be read by another similar router to
produce an identical configuration.

• The command interface must provide for automa-
tion of management tasks. In particular, command
output must be machine parseable and include a nu-
meric result code. It is permissible to have separate
modes for human and machine-readable output, but
both modes must contain the same information.

There are quite a few more potential requirements un-
der active discussion. Network operators are encouraged
to read the draft document and join in the mailing
list discussion at ops-nm@ietf.org. (Send subscription
requests to ops-nm-request@ops.ietf.org.)

References

[1] Woolf S., Woodcock, B., Operator Requirements
of Infrastructure Management Methods, work in
progress, 2001.

Four Engineers and a Trouble-
maker

Tom Cikoski

A recent poster on the comp.protocols.snmp Usenet
news group asked about the availability of software to
convert “CMIP GDMO to SNMP ASN.1.” Esteemed
SNMP author Dave Perkins replied that, were such a
task possible, it would require a team of “4 engineers
and a trouble maker.” He then went one to list the roles
in his proposed team.

1. SNMP MIB Expert (SNMP)

2. CMIP MIB Expert (CMIP)

3. Subject Matter Expert (Subj)

4. Application Developer (Devel)

VOLUME 9, NUMBER 1 DECEMBER, 2001

The Simple Times 15

5. Network Operator (User)

Since Dave did not explicitly identify the “trouble-
maker” on the team, speculation ran rife, and several
news group regulars wrote me, identifying the “obvious
choice.” The answers all differed.

So, by special permission of the parties involved, I am
providing a transcript of the first meeting of the above
team with their venture capital provider, Mr. Muncie
(“Mun”) E. Baggs. You can decide for yourself who the
trouble maker is.

• Baggs: First I’d like to thank all of you for coming
today.

• User: Ok, but where’s the rest room?

• Devel: And where’s the phone?

• CMIP: And where’s the food?

• SNMP: And where’s the beer?

• Baggs: Ladies and gentlemen, all of these details
are in your registration bags, along with your free
luggage tag and ”I Like Founder’s Options” tee
shirt. Now, would one of you please comment on the
feasibility of the business plan?

• Devel: Well, as you know from all the other software
startups you’ve funded, we can create any program
you can imagine given enough staff, time, equip-
ment and gourmet coffee.

• Baggs: So?

• Devel: Put another hundred coders and two more
years in the plan. I’ll have the beta done a year after
that, and then we’ll all change jobs for a new start
up.

• CMIP: This whole effort is pointless. CMIP is so far
superior to SNMP that the product is unnecessary.
SNMP is only a passing phase anyway. Say, would
anyone like a new shelf load of requirements docu-
ments?

• Subj: A MIB is a horse designed by a committee.
I’ve seen both these so-called MIBs and neither one
adequately describes the underlying reality. The
real world is not a discrete set of disconnected
values with N choices of operational response. It’s
all over the map!

• SNMP: CMIP is so pointlessly bizarre that it could
not be boiled down to the elegant simplicity of the
SMI. What would be the point. Besides, SMI isn’t

ASN.1, so you need to retitle the plan anyway. Hey,
just do a new SMIv2 MIB by hand. Is there any
Pauli Girl in here?

• User: While you all sit here playing with yourselves,
I still have a network to run. I have to provide
high reliability at low cost with limited staff. I
have to react to every new technology that comes
along whether I want to or not, and learn every
new acronym as soon as it surfaces. There are
still no management products that live up to the
expectations the sales guys put into my boss’s head.
And you think I’m going to care about this product?
Feh!

• Baggs: Thank you all for your incisive comments.
I see we have the makings of a whole new industry
leviathan here. I’ll announce the product at the next
Interop!

Standards Summary

Please consult the latest version of Internet Official
Protocol Standards. As of this writing, the latest version
is RFC 3000.

SMIv1 Data Definition Language

Full Standards:

• RFC 1155 - Structure of Management Information

• RFC 1212 - Concise MIB Definitions

Informational:

• RFC 1215 - A Convention for Defining Traps

SMIv2 Data Definition Language

Full Standards:

• RFC 2578 - Structure of Management Information

• RFC 2579 - Textual Conventions

• RFC 2580 - Conformance Statements

SNMPv1 Protocol

Full Standards:

• RFC 1157 - Simple Network Management Protocol

Proposed Standards:

• RFC 1418 - SNMP over OSI

• RFC 1419 - SNMP over AppleTalk

• RFC 1420 - SNMP over IPX

VOLUME 9, NUMBER 1 DECEMBER, 2001

The Simple Times 16

SNMPv2 Protocol

Draft Standards:

• RFC 1905 - Protocol Operations for SNMPv2

• RFC 1906 - Transport Mappings for SNMPv2

• RFC 1907 - MIB for SNMPv2

Experimental:

• RFC 1901 - Community-based SNMPv2

• RFC 1909 - Administrative Infrastructure

• RFC 1910 - User-based Security Model

SNMPv3 Protocol

Draft Standards:

• RFC 2571 - Architecture for SNMP Frameworks

• RFC 2572 - Message Processing and Dispatching

• RFC 2573 - SNMP Applications

• RFC 2574 - User-based Security Model

• RFC 2575 - View-based Access Control Model

• RFC 1905 - Protocol Operations for SNMPv2

• RFC 1906 - Transport Mappings for SNMPv2

• RFC 1907 - MIB for SNMPv2

Proposed Standards:

• RFC 2576 - Coexistence between SNMP Versions

Informational:

• RFC 2570 - Introduction to SNMPv3

Experimental:

• RFC 2786 - Diffie-Helman USM Key Management

SNMP Agent Extensibility

Draft Standards:

• RFC 2741 - AgentX Protocol Version 1

• RFC 2742 - AgentX MIB

SMIv1 MIB Modules

Full Standards:

• RFC 1213 - Management Information Base II

• RFC 1643 - Ethernet-Like Interface Types MIB

Draft Standards:

• RFC 1493 - Bridge MIB

• RFC 1559 - DECnet phase IV MIB

Proposed Standards:

• RFC 1285 - FDDI Interface Type (SMT 6.2) MIB

• RFC 1381 - X.25 LAPB MIB

• RFC 1382 - X.25 Packet Layer MIB

• RFC 1414 - Identification MIB

• RFC 1461 - X.25 Multiprotocol Interconnect MIB

• RFC 1471 - PPP Link Control Protocol MIB

• RFC 1472 - PPP Security Protocols MIB

• RFC 1473 - PPP IP NCP MIB

• RFC 1474 - PPP Bridge NCP MIB

• RFC 1512 - FDDI Interface Type (SMT 7.3) MIB

• RFC 1513 - RMON Token Ring Extensions MIB

• RFC 1525 - Source Routing Bridge MIB

• RFC 1742 - AppleTalk MIB

SMIv2 MIB Modules

Full Standards:

• RFC 2819 - Remote Network Monitoring MIB

Draft Standards:

• RFC 1657 - BGP version 4 MIB

• RFC 1658 - Character Device MIB

• RFC 1659 - RS-232 Interface Type MIB

• RFC 1660 - Parallel Printer Interface Type MIB

• RFC 1694 - SMDS Interface Type MIB

• RFC 1724 - RIP version 2 MIB

• RFC 1748 - IEEE 802.5 Interface Type MIB

VOLUME 9, NUMBER 1 DECEMBER, 2001

The Simple Times 17

• RFC 1850 - OSPF version 2 MIB

• RFC 1907 - SNMPv2 MIB

• RFC 2115 - Frame Relay DTE Interface Type MIB

• RFC 2571 - SNMP Framework MIB

• RFC 2572 - SNMPv3 MPD MIB

• RFC 2573 - SNMP Applications MIBs

• RFC 2574 - SNMPv3 USM MIB

• RFC 2575 - SNMP VACM MIB

• RFC 2790 - Host Resources MIB

• RFC 2863 - Interfaces Group MIB

Proposed Standards:

• RFC 1666 - SNA NAU MIB

• RFC 1696 - Modem MIB

• RFC 1697 - RDBMS MIB

• RFC 1747 - SNA Data Link Control MIB

• RFC 1749 - 802.5 Station Source Routing MIB

• RFC 1759 - Printer MIB

• RFC 2006 - Internet Protocol Mobility MIB

• RFC 2011 - Internet Protocol MIB

• RFC 2012 - Transmission Control Protocol MIB

• RFC 2013 - User Datagram Protocol MIB

• RFC 2020 - IEEE 802.12 Interfaces MIB

• RFC 2021 - RMON Version 2 MIB

• RFC 2024 - Data Link Switching MIB

• RFC 2051 - APPC MIB

• RFC 2096 - IP Forwarding Table MIB

• RFC 2108 - IEEE 802.3 Repeater MIB

• RFC 2127 - ISDN MIB

• RFC 2128 - Dial Control MIB

• RFC 2206 - Resource Reservation Protocol MIB

• RFC 2213 - Integrated Services MIB

• RFC 2214 - Guaranteed Service MIB

• RFC 2232 - Dependent LU Requester MIB

• RFC 2238 - High Performance Routing MIB

• RFC 2266 - IEEE 802.12 Repeater MIB

• RFC 2287 - System-Level Application Mgmt MIB

• RFC 2320 - Classical IP and ARP over ATM MIB

• RFC 2417 - Multicast over UNI 3.0/3.1 / ATM MIB

• RFC 2452 - IPv6 UDP MIB

• RFC 2454 - IPv6 TCP MIB

• RFC 2455 - APPN MIB

• RFC 2456 - APPN Trap MIB

• RFC 2457 - APPN Extended Border Node MIB

• RFC 2465 - IPv6 Textual Conventions and MIB

• RFC 2466 - ICMPv6 MIB

• RFC 2493 - 15 Minute Performance History TCs

• RFC 2494 - DS0, DS0 Bundle Interface Type MIB

• RFC 2495 - DS1, E1, DS2, E2 Interface Type MIB

• RFC 2496 - DS3/E3 Interface Type MIB

• RFC 2512 - Accounting MIB for ATM Networks

• RFC 2513 - Accounting Control MIB

• RFC 2514 - ATM Textual Conventions and OIDs

• RFC 2515 - ATM MIB

• RFC 2558 - SONET/SDH Interface Type MIB

• RFC 2561 - TN3270E MIB

• RFC 2562 - TN3270E Response Time MIB

• RFC 2564 - Application Management MIB

• RFC 2576 - SNMP Community MIB

• RFC 2584 - APPN/HPR in IP Networks

• RFC 2591 - Scheduling MIB

• RFC 2594 - WWW Services MIB

• RFC 2605 - Directory Server MIB

• RFC 2613 - RMON for Switched Networks MIB

• RFC 2618 - RADIUS Authentication Client MIB

• RFC 2619 - RADIUS Authentication Server MIB

VOLUME 9, NUMBER 1 DECEMBER, 2001

The Simple Times 18

• RFC 2667 - IP Tunnel MIB

• RFC 2662 - ADSL Line MIB

• RFC 2665 - Ethernet-Like Interface Types MIB

• RFC 2668 - IEEE 802.3 MAU MIB

• RFC 2669 - DOCSIS Cable Device MIB

• RFC 2670 - DOCSIS RF Interface MIB

• RFC 2677 - Next Hop Resolution Protocol MIB

• RFC 2720 - Traffic Flow Measurement Meter MIB

• RFC 2737 - Entity MIB

• RFC 2742 - AgentX MIB

• RFC 2787 - Virtual Router Redundancy Proto. MIB

• RFC 2788 - Network Services Monitoring MIB

• RFC 2789 - Mail Monitoring MIB

• RFC 2873 - Fibre Channel Fabric Element MIB

• RFC 2851 - Internet Network Address TCs

• RFC 2856 - High Capacity Data Type TCs

• RFC 2864 - Interfaces Group Inverted Stack MIB

• RFC 2895 - RMON Protocol Identifier Reference

• RFC 2925 - Ping, Traceroute, Lookup MIBs

• RFC 2932 - IPv4 Multicast Routing MIB

• RFC 2933 - IGMP MIB

• RFC 2940 - COPS Client MIB

• RFC 2954 - Frame Relay Service MIB

• RFC 2955 - Frame Relay / ATM PVC MIB

• RFC 2959 - Real-Time Transport Protocol MIB

• RFC 2981 - Event MIB

• RFC 2982 - Expression MIB

• RFC 3014 - Notification Log MIB

• RFC 3019 - Multicast Listener Discovery MIB

• RFC 3020 - Frame Relay UNI/NNI Multilink MIB

• RFC 3055 - PSTN/Internet Interworking MIB

• RFC 3083 - DOCSIS Baseline Privacy Interface MIB

• RFC 3144 - RMON Interface Monitoring MIB

• RFC 3165 - Scripting MIB

Informational:

• RFC 1628 - Uninterruptible Power Supply MIB

• RFC 2620 - RADIUS Accounting Client MIB

• RFC 2621 - RADIUS Accounting Server MIB

• RFC 2666 - Ethernet Chip Set Identifiers

• RFC 2707 - Print Job Monitoring MIB

• RFC 2896 - RMON Protocol Identifier Macros

• RFC 2922 - Physical Topology MIB

Experimental:

• RFC 2758 - SLA Performance Monitoring MIB

• RFC 2786 - Diffie-Helman USM Key MIB

• RFC 2934 - IPv4 PIM MIB

IANA Maintained MIB Modules

The Internet Assigned Numbers Authority (IANA)
maintains several MIB modules. The IANA MIB reposi-
tory is located at ftp://ftp.iana.org/mib/iana.mib/.

• Interface Type Textual Convention
(ianaiftype.mib)

• Address Family Numbers Textual Convention
(ianaaddressfamilynumbers.mib)

• TN3270E Textual Conventions
(ianatn3270etc.mib)

• Language Identifiers
(ianalanguage.mib)

• IP Routing Protocol Textual Conventions
(ianaiprouteprotocol.mib)

Related Documents

Informational:

• RFC 1270 - SNMP Communication Services

• RFC 1321 - MD5 Message-Digest Algorithm

• RFC 1470 - Network Management Tool Catalog

• RFC 2039 - Applicability of Standard MIBs to WWW
Server Management

VOLUME 9, NUMBER 1 DECEMBER, 2001

The Simple Times 19

• RFC 2962 - SNMP Application Level Gateway for
Payload Address Translation

• RFC 2975 - Introduction to Accounting Manage-
ment

• RFC 3052 - Service Management Architectures Is-
sues and Review

• RFC 3216 - SMIng Objectives

Experimental:

• RFC 1187 - Bulk Table Retrieval with the SNMP

• RFC 1224 - Techniques for Managing
Asynchronously Generated Alerts

• RFC 1238 - CLNS MIB

• RFC 1592 - SNMP Distributed Program Interface

• RFC 1792 - TCP/IPX Connection MIB Specification

• RFC 3139 - Requirements for Configuration Man-
agement of IP-based Networks

• RFC 3179 - Script MIB Extensibility Protocol 1.1

• RFC 3198 - Terminology for Policy-Based Manage-
ment

Open Source News

NET-SNMP 4.2.3 http://net-snmp.sourceforge.net/

It is now more than one year back that the NET-SNMP
sourceforge project started from the UCD-SNMP sources.
The latest release of NET-SNMP, version 4.2.3, appeared
at the end of November 2001. This version removes a
large number of minor errors, and improves support for
the MIB-II and the host resources MIB. Recently, work
on the upcoming release 5.0 has started.

scli 0.2.6 http://www.ibr.cs.tu-bs.de/projects/scli/

The SNMP command line interface (scli) is a new open
source package which provides a command line interface
to display, modify and monitor data retrieved from
SNMP agents. The scli provides command line editing,
completion and history capabilities. The scli commands
are MIB aware and organized in a logical command tree
and hide the details of the SNMP interactions and the
underlying MIB data structures.

libsmi 0.3.0 http://www.ibr.cs.tu-bs.de/projects/libsmi/

In November 2001, version 0.3.0 of libsmi appeared.
The libsmi is a C library that allows applications to
access SMI MIB module information through a well
defined API. The distribution contains the smilint and
smidump tools for MIB module validation and conversion.
The most significant change since the previous 0.2.x
releases is the addition of the smidiff tool which can be
used to compare two revisions of the same MIB module.

ntop 2.0 http://www.ntop.org/

Ntop version 2.0 was released in December 2001. It
provides improved stability and performance enhance-
ments plus some new features. The most interesting
new feature is probably the ability to export traffic flows
in Cisco’s NetFlow format. Work has already started
on ntop version 2.0.1 which will include a mirror mode
where flow information is collected by ntop for traffic
analysis.

ethereal 0.9 http://www.ethereal.com/

Ethereal is a free graphical protocol analyzer which
allows operators to browse the captured data. Ethereal
0.9.0 has been released in December 2001 and many new
protocol dissectors.

VOLUME 9, NUMBER 1 DECEMBER, 2001

The Simple Times 20

Recent Publications

Managing Business and Service Networks

• Author: Lundy Lewis <lewis@aprisma.com>

• Publisher: Kluver Academic / Plenum Publishers
http://www.kluver.com/

• ISBN: 0-306-46559-0

• Available: March, 2001

This book explains the challenges involved in managing
todays communication networks. The first part of the
book introduces general network management concepts
and the architecture of Aprisma’s Spectrum manage-
ment system. The second and probably the most inter-
esting part of the book describes several case studies
where management technologies have been applied to
solve real-world management problems. The third part
tries to draw some conclusions for future directions of
network management research and development.

The text is very specific to Aprisma’s Spectrum man-
agement system and sometimes has a touch of a market-
ing document. This style comes as no surprise once you
realize that the author has been heavily involved in the
development of Spectrum and owns several patents in
this area.

The book provides useful information for readers who
want to better understand the overall picture of manag-
ing networks and who like to learn how management
systems can be integrated and applied in real-world
networks. The third part also contains an interesting
description of the gap between real-world network op-
erations and network management research and why
research results are only very slowly adopted by the
industry.

Essential SNMP

• Authors: Douglas R. Mauro, Kevin J. Schmidt

• Publisher: O’Reilly & Associates
http://www.oreilly.com/

• ISBN: 0-596-00020-0

• Available: July, 2001

This O’Reilly book on SNMP does not spend lots of pages
to explain all the little details of the SNMP technology.
The authors instead cover SNMP-based management
software which is widely deployed, such as HP’s Open-
View, Castle Rock’s SNMPc, NET-SNMP, and MRTG.
They explain in practical examples how to configure
agents and to setup polling and monitoring strategies.

Calendar and Announcements

IETF Meetings:

• 52nd Meeting of the IETF
December 9-14, 2001, Salt Lake City, UT, USA

• 53rd Meeting of the IETF
March 17-22, 2002, Minneapolis, MN, USA

• 54th Meeting of the IETF
July 14-19, 2002, Yokohama, Japan

Conferences and Workshops:

• Large Installation System Administration
Conference 2001 (LISA 2001)
December 2-7, 2001, San Diego, CA, USA

• Network Operations and Management
Symposium 2002 (NOMS 2002)
April 15-19, 2002, Florence, Italy

• Policy Workshop (Policy 2002)
June 5-7, 2002, Monterey, CA, USA

• Workshop on Distributed Systems Operations and
Management 2002 (DSOM 2002)
October 21-23, 2002, Montreal, Canada

• Integrated Network Management (IM 2003)
March 24-28, 2003, Colorado Springs, CO, USA

Exhibitions and Trade Shows:

• NetWorld + Interop Sydney
March 5-7, 2002, Syndey, Australia

• NetWorld + Interop Las Vegas
May 5-10, 2002, Las Vegas, USA

• NetWorld + Interop Tokyo
July 1-5, 2002, Tokyo, Japan

• NetWorld + Interop Toronto
July 10-12, 2002, Toronto, Canada

• NetWorld + Interop Sao Paulo
August 20-23, 2002, Sao Paulo, Brazil

• NetWorld + Interop Melbourne
September 4-6, 2002, Melbourne, Australia

• NetWorld + Interop Atlanta
September 8-13, 2002, Atlanta, USA

• NetWorld + Interop Paris
November 6-8, 2002, Paris, France

VOLUME 9, NUMBER 1 DECEMBER, 2001

The Simple Times 21

Publication Information

Editors
Aiko Pras University of Twente

Jürgen Schönwälder University of Osnabrück
Editorial Board

David Harrington Enterasys Networks
Keith McCloghrie Cisco Systems Inc.

Bob Natale Lucent Technologies
David Perkins SNMPinfo

Randy Presuhn BMC Software Inc.
Steve Waldbusser

Bert Wijnen Lucent Technologies
Contact Information

E-mail st-editorial@simple-times.org

ISSN 1060–6068

Submissions

The Simple Times solicits high-quality articles of tech-
nology and comment. Technical articles are refereed to
ensure that the content is marketing-free. By definition,
commentaries reflect opinion and, as such, are reviewed
only to the extent required to ensure commonly-accepted
publication norms.

The Simple Times also solicits terse announcements
of products and services, publications, and events. These
contributions are reviewed only to the extent required to
ensure commonly-accepted publication norms.

Submissions are accepted only via electronic mail,
and must be formatted in HTML version 1.0. Each
submission must include the author’s full name, title, af-
filiation, postal and electronic mail addresses, telephone,
and fax numbers. Note that by initiating this process,
the submitting party agrees to place the contribution
into the public domain.

Subscriptions

The Simple Times is available in HTML, PDF and
PostScript. New issues are announced via an electronic
mailing list. Send electronic mail to

st-request@simple-times.org

with

subscribe simple-times

in the body if you want to subscribe to this list. Back
issues are available via The Simple Times Web server:

http://www.simple-times.org/

VOLUME 9, NUMBER 1 DECEMBER, 2001

