
The Simple Times
TM

THE QUARTERLY NEWSLETTER OF SNMP TECHNOLOGY, COMMENT, AND EVENTS

VOLUME 7, NUMBER 2 NOVEMBER, 1999

The Simple Times is an openly-available publication
devoted to the promotion of the Simple Network Man-
agement Protocol. In each issue, The Simple Times
presents technical articles and featured columns, along
with a standards summary and a list of Internet re-
sources. In addition, some issues contain summaries of
recent publications and upcoming events.

In this Issue:

Distributed Management
Editorial . 1
Schedule MIB . 2
Introduction to the Script MIB 5
Script MIB Implementation Experience 6
Script MIB Performance Analysis 9
Practical Experiences with Script MIB Applica-

tions . 12

Miscellany
Standards Summary 14
Calendar and Announcements 18

Publication Information 18

The Simple Times is openly-available. You are free
to copy, distribute, or cite its contents; however, any
use must credit both the contributor and The Simple
Times. (Note that any trademarks appearing herein are
the property of their respective owners.) Further, this
publication is distributed on an “as is” basis, without
warranty. Neither the publisher nor any contributor
shall have any liability to any person or entity with
respect to any liability, loss, or damage caused or alleged
to be caused, directly or indirectly, by the information
contained in The Simple Times.

The Simple Times is available as an online journal in
HTML, PDF and PostScript. New issues are announced
via an electronic mailing list. For information on sub-
scriptions, see page 18.

Editorial
Aiko Pras, University of Twente

Jürgen Schönwälder, TU Braunschweig

One of the interesting additions to the Internet man-
agement RFCs are the specifications that define Dis-
tributed Management (DISMAN). The idea to distribute
management functionality over multiple managers is
relatively old and can already be found in the early
SNMPv2 drafts, which defined the Manager to Manager
(M2M) MIB to facilitate the delegation of polling tasks
to intermediate level managers. Since this MIB could
only be used for simplistic management tasks, it was
generally seen as a starting point for distributed man-
agement, and not as the final solution. To develop more
powerful distributed management approaches, a new
IETF DISMAN working group was therefore formed,
and responsibility for the M2M MIB moved to this group.

Currently the DISMAN group is working on three dif-
ferent approaches. The first approach can be seen as the
further development of the M2M MIB, and is described
in three Internet Drafts: the Expression MIB, the Event
MIB and the Notification Log MIB. The second approach
is based on scripts and is defined in two RFCs: the
Script MIB and the Scheduling MIB. The third approach
focuses on MIBs for specific management functions that
can be invoked on remote devices. Such MIBs are
defined in the Remote Operations Internet Draft. It
should be noted that these approaches should not be
considered as competitors, but as complements; for a
certain task it may be better to use one approach, and
for a different task another approach. Unfortunately it
is not easy to integrate the three approaches and use,
for example, the Scheduling MIB in combination with
the Event MIB.

This and an upcoming issue of The Simple Times
provide an overview of the various DISMAN approaches.
In this issue we will focus on the Schedule and Script
MIB; in a future issue we will discuss the Event, Expres-
sion and Notification Log MIB, as well as the Remote
Operations MIB. This issue starts with an article by
Alan Luchuk, who discusses the Schedule MIB and gives
his experiences while implementing this MIB. The other
articles focus on the Script MIB. First David Levi pro-
vides an overview of this MIB. Next Éamonn McManus

The Simple Times 2

describes his Script MIB implementation. The third ar-
ticle is by Frank Strauß, who analysed the performance
of another Script MIB implementation. Finally Jürgen
Quittek and Cornelia Kappler describe some practical
experiences with Script MIB applications. As usual, this
issue also contains a standards summary, as well as the
calendar and announcement section.

The issue you are now reading is already the twentieth
issue of The Simple Times. The first issue appeared in
March 1992 and, including this issue, we have published
more than 360 pages of text. Recently a number of
people asked whether it would be possible to bundle all
issues, find a publisher and print it as book. Such a book
could provide an extensive index and would serve as a
nice reference. To find out if people would be interested
in buying such book, we have added a small survey to our
homepage; be sure to complete this survey if you would
like to see the first twenty issues of The Simple Times as
a reference book in your bookshelf.

Schedule MIB
Alan Luchuk, SNMP Research Incorporated

There is a well-known need to perform network man-
agement operations at periodic intervals or at scheduled
times. For example, a network manager may need to
enable or disable network interfaces at certain times of
day. The DISMAN-SCHEDULE-MIBwas developed to address
this need. This article provides an overview of the
DISMAN-SCHEDULE-MIB and discusses SNMP Research’s
implementation experience.

RFC 2591, currently at Proposed Standard status,
details the DISMAN-SCHEDULE-MIB. RFC 2591 is a prod-
uct of the Distributed Management (DISMAN) working
group, within the Operations and Management Area of
the IETF.

MIB Overview

The DISMAN-SCHEDULE-MIB consists of a single scalar
(schedLocalTime) and a single table (schedTable). The
schedLocalTime MIB object specifies the agent’s notion
of the current (real) time. This object is implemented as
an 11-octet DateAndTime textual convention.

Each row (schedEntry) in the schedTable specifies a
single scheduled event. Each row is indexed by an
owner string (schedOwner) and an event name string
(schedName). The schedOwner allows multiple users to
schedule events in an agent. The schedName allows
each user to schedule multiple events. The schedDescr

provides a human-readable description of the scheduled
event.

In the schedTable, the row indixes are each prefixed
by the length of the index string. For example if the
schedOwner is P, a one-character string, with an ASCII
value of 80 (in decimal), the owner index field becomes
1.80. Similarly, if the schedName is Q, a one-character
string, with an ASCII value of 81 (in decimal), the name
index field becomes 1.81. In this example, the complete
index for this row would be 1.80.1.81. While making it
more difficult to configure, this double-indexing facili-
tates access control using the view-based access control
model defined in RFC 2575.

The schedRowStatus is an object with the syntax of the
RowStatus textual convention. It lets the user manage
the status of a table row - the creation, editing, and dele-
tion of rows - in the schedTable. The schedStorageType

object lets the user specify whether the row is saved
in non-volatile storage. The schedAdminStatus object
specifies whether the desired status of the scheduled
event is enabled or disabled. The schedOperStatus

object reports the actual status of the scheduled event.

Setting Objects at the Trigger Time

The schedVariable object specifies which MIB object
should be set at the specified time. This object is an
OID, and it must specify completely the object to be
set, including all required instancing information. The
schedValue object specifies the Integer32 value set at
the scheduled time. If needed, the schedContextName

object specifies the SNMP context where schedVariable

occurs.

The DISMAN-SCHEDULE-MIB can set only a single
Integer32 MIB object at the trigger time. If the capa-
bility to set multiple Integer32 objects at the trigger
time is needed, multiple events can be scheduled for
the same trigger time. If the capability to set non-
Integer32 objects is required, the DISMAN-SCHEDULE-MIB

can be coupled with another facility such as the
DISMAN-SCRIPT-MIB.

The DISMAN-SCHEDULE-MIB supports setting MIB
objects in the same SNMP agent in which the
DISMAN-SCHEDULE-MIB is implemented. It does not sup-
port setting MIB objects in another SNMP agent on
another IP host.

If a scheduled set request fails, the schedLastFailure

object specifies the error status returned by the most
recent set operation. The schedLastFailed object, a
DateAndTime object, reports the date and time of the
most recent set failure. The schedFailures object re-
ports a count of the number of set failures for this
scheduled event.

VOLUME 7, NUMBER 2 NOVEMBER, 1999

The Simple Times 3

Types of Scheduling

The schedType object specifies the type of scheduled
event; it may have the values periodic(1), calendar(2),
or oneshot(3). The periodic(1) value specifies that
the set request be performed repeatedly at regular
timed intervals. The calendar(2) value specifies the
set request be performed at specific dates and times.
The oneshot(3) value specifies that a set request is
performed once at a specific date and time, then the
event is finished.

1. Periodic Scheduling:

For periodic events, the schedInterval value spec-
ifies the minimum number of seconds between an
event performed repeatedly.

2. Calendar Scheduling:

For calendar-scheduled events, the schedWeekDay

BITS object lets the user specify the day(s) of the
week when the event should occur. Events may be
scheduled on multiple days of the week by enabling
multiple bits in the object. To ignore the day of the
week for scheduled events, schedWeekDay must be
set with all bits enabled. (Enabling a bit means
setting that bit to a value of 1.)

The schedMonth BITS object lets the user specify the
month(s) of the year when the event should occur.
Events may be scheduled in multiple months of the
year by enabling multiple bits in the object. To
ignore the month, the schedMonth object must be set
with all bits enabled.

The schedDay BITS object lets the user specify the
day(s) of the month when the event should occur.
It also allows the user to specify that the event be
triggered on a specific day from the end of the month
(e.g., on the 7th day from the end of the month).
Events may be scheduled on multiple days of the
month by setting multiple bits in the object. To
ignore the day of the month, schedDay object must
be set with all bits enabled.

The schedHour BITS object lets the user specify the
hour(s) of the day when the event should occur.
Events may be scheduled to occur on multiple hours
of the day by enabling multiple bits in the object.
To ignore the hour, the schedHour object must be set
with all bits enabled.

The schedMinute BITS object lets the user specify
the minute(s) of the hour when the event should
occur. Events may be scheduled to occur on multiple
minutes of the hour by enabling multiple bits in the
object. To ignore the minute, the schedMinute object
must be set with all bits enabled.

3. One-Shot Scheduling:

One-shot scheduling is almost identical to calendar
scheduling, with one difference. The agent will
repeat calendar-scheduled events, but the agent will
execute a one-shot event only a single time, then
the event is finished. Because one-shot scheduling
is almost identical to calendar scheduling, all of
the MIB objects that configure calendar scheduling
(schedWeekDay, schedMonth, schedDay, schedHour,
schedMinute) also configure one-shot scheduling.

The DISMAN-SCHEDULE-MIB can be configured to send
notifications (traps) under certain circumstances. The
schedActionFailure notification is generated when the
invocation of a scheduled action fails.

Implementation Experience

During implementation, we found RFC 2591 clear and
complete. However, RFC 2591 contains two issues that
we believe make the DISMAN-SCHEDULE-MIBharder-to-use
or less versatile than it could be otherwise.

The rows in the schedTable are doubly-indexed with
SnmpAdminString indexes. This was a design decision
by the DISMAN working group to support view-based
access control to the different scheduled events. We
strongly agree with the design for view-based access
control. However, we believe there are other ways
of providing equivalent support of view-based access
control that also provide greater end-user simplicity for
SNMP exact-instance get and set requests than two
SnmpAdminString row indexes.

Generic MIB browser tools typically do not permit
octet string table row indices to be entered in a human-
friendly format. Thus, requiring SnmpAdminString row
indexes makes specific-instance configuration of the
DISMAN-SCHEDULE-MIB difficult using these generic tools.
This difficulty either

� encourages DISMAN-SCHEDULE-MIB users to use very
simple schedOwner/schedName strings (like “A” and
“B”); or

� requires the use of specialized configuration tools
that support entering the octet string table row
indices in a human-friendly format.

We suspect that in production-oriented network man-
agement environments, the ability to do ad-hoc SNMP
exact-instance get and set requests easily (using net-
work management tools like HP OpenView) will over-
shadow the utility of meaningful owner and event names
in the row indexes. We suspect network managers will
opt to simplify ad-hoc SNMP requests by using very
short row indexes.

VOLUME 7, NUMBER 2 NOVEMBER, 1999

The Simple Times 4

Second, the DISMAN-SCHEDULE-MIB only supports set-
ting a single Integer32 value at the scheduled time.
This somewhat restricts the stand-alone utility of the
DISMAN-SCHEDULE-MIB. It would add utility if it supported
setting multiple objects and different data-types at the
scheduled time. This enhancement would make it pos-
sible, for example, to create and activate a table row at
the scheduled time.

Currently, our implementation exists as a sub-agent
in a master-agent/sub-agent architecture, but it is easily
portable into a monolithic agent. Our implementation
supports all MIB objects and notifications in RFC 2591,
as well as periodic, calendar, and one-shot scheduled
events. In addition, for computing platforms without
real-time clocks, conditional compilation macros support
the lower compliance level described in RFC 2591.

Although our implementation proceeded smoothly, we
did have difficulties sufficiently understanding two is-
sues. RFC 2591 hints at these issues, but more expla-
nation or examples of these issues would help ensure
correct future implementations. Fortunately for us, one
of the MIB authors, David Levi, helped us understand
these issues.

First, as described in RFC 2591, calendar scheduled
events should be triggered as soon as possible on, or
after, the minute they occur. When a scheduled event
is triggered, its completion time may be significant,
perhaps due to excessive system load or other causes.
If a series of events is scheduled to occur during a
given minute, the execution delays may accumulate.
However, the agent must be properly written so that
cumulative processing delays do not cause it to “miss”
events scheduled for triggering in subsequent minutes.

As an example, suppose 250 events are scheduled
to occur at midnight on the first day of the month.
The elapsed time to trigger the 250 events may take
five minutes. Upon exit from the event trigger loop,
the DISMAN-SCHEDULE-MIB agent may query the system’s
real-time, and find the real-time now is 00:05. The
agent must properly handle this possibility; it must not
skip events scheduled to occur during the intervening
minutes. Upon finding the real-time is 00:05, the agent
must trigger all events scheduled for the minutes 00:01
through 00:05.

Second, during the daylight savings time changes,
the agent must properly handle “nonexistent times” or
“ambiguous times.” For example, in the spring season
when clocks are set forward an hour, events scheduled
for the missing hour must be triggered immediately
after the time change. Similarly, in the fall season when
clocks are set backward an hour, events scheduled for the
duplicate hour should be triggered only once. We found
that thoroughly testing and debugging this capability

was time consuming (no pun intended).

Operational Experience

We ran, tested, and productized our implementa-
tion of the DISMAN-SCHEDULE-MIB. We demonstrated it
at the two most recent U.S. Networld+Interop trade
shows. In addition, we tested and demonstrated our
DISMAN-SCHEDULE-MIB sub-agent launching scripts in
our DISMAN-SCRIPT-MIB sub-agent, and found that this
scenario works as expected. Because (to the best of
our knowledge) we have the only DISMAN-SCHEDULE-MIB

implementation, we have not tested its interoperability
with others.

During testing, we stress-tested our implementa-
tion by scheduling several high-frequency periodic sets.
Because our initial implementation uses a master-
agent/sub-agent architecture, the DISMAN-SCHEDULE-MIB

sub-agent executes independently from other sub-agents
that execute the triggered set requests. This means
that our DISMAN-SCHEDULE-MIB sub-agent may trigger set
requests faster than the set requests can be completed.
Not surprisingly, we re-discovered the basic queuing
theory concept: If the mean time between periodic sets
is shorter than the mean time to service the sets, infinite
queues can result. A cautionary note in RFC 2591
about possible undesirable side effects of high-frequency
periodic sets may help future implementors and users
avoid surprises.

Summary

All in all, RFC 2591 is implementable, workable,
and useful. The DISMAN-SCHEDULE-MIB is fairly sim-
ple and has utility apart from other MIBs (e.g., the
DISMAN-SCRIPT-MIB or the DISMAN-EVENT-MIB). Although
we believe changes to RFC 2591 would make the
DISMAN-SCHEDULE-MIB easier to use and increase its util-
ity, we believe RFC 2591 can be advanced further in the
standards process. We can see no compelling reason to
radically alter RFC 2591 or merge its functionality with
other MIBs.

VOLUME 7, NUMBER 2 NOVEMBER, 1999

The Simple Times 5

Introduction to the Script MIB
David Levi, Nortel Networks

This article provides an overview of the Script MIB
which is a product of the IETF Distributed Management
(DISMAN) working group. The DISMAN-SCRIPT-MIB is
documented in RFC 2592.

History

The DISMAN-SCRIPT-MIB was partly derived from a MIB
designed by myself and others at SNMP Research, Inc.
This MIB was submitted as a potential starting point
when the DISMAN working group was being formed.
At that time, there were ongoing discussions about the
approach that should be taken by the new working
group.

These discussions involved topics such as whether
the working group should focus on MIB design and
SNMP-based approaches to distributed management, or
whether other non-SNMP-based approaches should be
considered. In addition, the discussions considered the
question of whether the MIBs designed by the working
group should attempt to provide very specific functional-
ity for distributing management tasks, or whether they
should provide more general mechanisms.

Ultimately, the working group decided to focus exclu-
sively on MIB design, and to follow both approaches of
providing MIBs with specific functionality, and MIBs
with more general functionality. In particular, the
working group decided to design several special-purpose
MIBs, among which is the DISMAN-SCHEDULE-MIB, and to
design a general purpose MIB for distributing scripts,
the DISMAN-SCRIPT-MIB. This approach has resulted in a
good start in infrastructure for distributed management
(consisting of the various special-purpose MIBs), as
well as a general purpose mechanism for implementing
additional distributed management functionality not yet
addressed by the disman working group.

MIB Overview

The DISMAN-SCRIPT-MIB provides mechanisms for dis-
tributing scripts which perform arbitrary management
tasks to remote devices, which can execute these scripts.
Executing scripts in remote devices can reduce the pro-
cessing load on a central management station. But more
importantly, it provides a mechanism for keeping polling
local.

The traditional model in SNMP of having a single
management station managing many agents runs into
scalability problems when a network grows too large.
This is because the amount of data that the management

station must retrieve and process grows rapidly as the
size of the network grows.

A solution to this problem is for the management
station to distribute the collection and processing of data
to other devices in the network. The DISMAN-SCRIPT-MIB

provides one mechanism to accomplish this.

The Nature of Scripts
The term “script” as used in the DISMAN-SCRIPT-MIB is
a very broad term. The document imposes very few
restrictions on what can be considered a script, only
that a script contains some type of executable code
which can be run by the device which implements the
MIB. This means that an implementor of the MIB may
choose the programming language(s) in which a script
must be implemented. Currently, there are implemen-
tations which permit scripts written using various Unix
shell languages, Java, and even proprietary languages
designed specifically for the purpose of manipulating
SNMP MIB objects.

The DISMAN-SCRIPT-MIB provides a pair of MIB tables,
the smLangTable and the smExtsnTable, which allow
an implementation of the MIB to advertise the script
languages (and versions) which it supports, as well
as any supported extensions to those languages. A
management station which wishes to distribute scripts
may read these tables to evaluate whether a particular
device which implements the DISMAN-SCRIPT-MIB meets
its needs.

Note that there are currently no requirements
as to what languages must be supported by a
DISMAN-SCRIPT-MIB implementation. This has been a
somewhat contentious issue within the DISMAN work-
ing group, as everybody has his own favorite language.
In the future there may be a minimum requirement
that all implementations support a particular language,
but at the moment, implementors are free to choose
whichever languages they wish. There are potential in-
teroperability issues related to these choices. However,
a discussion of these issues is beyond the scope of this
article.

Distribution of Scripts
The DISMAN-SCRIPT-MIB provides two mechanisms for
distributing scripts. These mechanisms are referred to
as the pull-model and the push-model. Both of these
models use a MIB table, the smScriptTable, to specify
the names and attributes of scripts which are to be
distributed to a device.

The pull-model uses a Uniform Resource Locator
(URL) to specify where a script is stored and how it
should be retrieved. An entity which supports the MIB
is responsible for retrieving a script configured using a
URL.

VOLUME 7, NUMBER 2 NOVEMBER, 1999

The Simple Times 6

The push-model uses a MIB table, the smCodeTable, to
allow a management station to push a script to a device
using SNMP SetRequest PDUs. In order to use the
smCodeTable, a script must be representable by a simple
string of binary data. The management station simply
creates entries in the smCodeTable which contain this
array of binary data, broken into pieces that fit in SNMP
packets, and stored as SNMP OCTET STRING data. (The
manner in which a script is split into OCTET STRING data
could be determined by the particular script language
being used.)

Execution of Scripts
The execution of scripts is controlled by a MIB table,
the smLaunchTable. This table provides a mechanism
for specifying arguments for scripts, as well as other
attributes such as the maximum time that a script may
run, the maximum number of concurrent invocations of
a script from a launch table entry, and the maximum
amount of time to keep the result of a script after
termination. The table also contains a control object,
smLaunchStart, which is used to actually initiate execu-
tion of a script.

Scripts which are executing or which have completed
execution are represented in the smRunTable. This table
contains information such as the time the script started
and finished execution, the reason the script finished
executing, the result of the script, the remaining time
the script is allowed to run, and the remaining time until
the entry in the smRunTable is aged out.

Sharing of Scripts
The DISMAN-SCRIPT-MIB provides a model for sharing
scripts. The model provides conventions for specifying
the owner of a script, and for providing one owner the
privilege of running another owner’s scripts. These
mechanisms work in conjunction with the view-based
access control model specified in RFC 2575. The model
specifies whether one owner can run another owner’s
script based on whether the script is read-accessible as
defined by RFC 2575.

The model provides two mechanisms for sharing
scripts, which are roughly analogous to the concept in
Unix systems for providing executable privileges and
set-uid privileges on a file. The first mechanism allows
an smLaunchTable entry created by one owner to refer
to a script distributed by another owner. In this case,
the script runs with the privileges of the owner who
created the smLaunchTable entry, and the corresponding
smScriptTable entry must also be accessible to that user.
The second mechanism simply allows an owner to create
an smLaunchTable entry whose smLaunchStart object is
accessible to other owners. These other owners may set
smLaunchStart in order to initiate execution of the script,

and the script runs with the privileges of the owner who
created the smLaunchTable entry.

Security
The DISMAN-SCRIPT-MIB provides a mechanism for run-
ning arbitrary applications on remote devices in a net-
work. This can have serious implications on security in a
network. The DISMAN-SCRIPT-MIB discusses these issues
briefly. However, many of these issues are dependent
on the systems on which the MIB is implemented. The
security implications of deploying this MIB should be
carefully considered by both implementors and by those
deploying devices which implement this MIB.

Script MIB Implementation Expe-
rience

Éamonn McManus, Silicomp Research Institute

This article describes how we at the Silicomp Research
Insitute implemented the Script MIB (RFC 2592) for a
small embedded network device. Work on the imple-
mentation was concurrent with the later draft stages of
the MIB and provided some useful feedback for the final
version.

Target Device

The implementation runs on a small networked com-
modity device. This device has permanent storage only
in the form of flash memory, and it has no real-time
clock. It runs an embedded operating system with a
complete TCP/IP network stack and an SNMP agent. It
can be configured with a Java Virtual Machine (JVM)
and we used this configuration both to write the code
for the various Script MIB objects and to run the scripts
themselves, which are Java programs in the JAR format.
The presence of a JVM meant that we had support for
URLs, needed to fetch scripts using the smScriptSource

object.

Why use the Script MIB?

The scripts that can be downloaded to our implemen-
tation are rather device-specific so we were not par-
ticularly interested in third-party scripts or in porting
scripts written for other Script MIB implementations.
The main advantages for us of the Script MIB as opposed
to a proprietary MIB were, first, that we did not have
to do the work of designing the MIB, and second, that
any management tool for the Script MIB can be used
to download our scripts to the device. In other words,
we were interested in protocol interoperability but not
script interoperability.

VOLUME 7, NUMBER 2 NOVEMBER, 1999

The Simple Times 7

Another important advantage of the Script MIB for
us was that there was a reference implementation de-
veloped jointly by the Technical University of Braun-
schweig and NEC C&C Research that was permanently
accessible over the Internet. During development we
could check our client tools against this implementation
both to make sure that they were correct and to see
what the reference implementation did in cases we were
unsure about.

Consequences of a Small System

A number of features of the Script MIB seem better
fitted to bigger machines running interactive operating
systems like Unix than to embedded devices.

Our device has no notion of a “user” or “owner.” Some
tables, such as the smScriptTable, are indexed by owner
and name strings. As far as we are concerned, these
are just two arbitrary strings that are combined to form
the index. But with a better implementation of SNMP
security, the owner string could gain a real meaning.

The device has a clock but, by default, no notion of real
time. So the Script MIB objects that refer to start and
end times actually give times relative to the Java base
date of the beginning of 1970. It is possible to create and
download a script that gets real time from somewhere
(NTP, for instance) and sets the device’s notion of time
according to that. It has been proposed that device time
be readable and, optionally, writable with a standard
SNMP object something like sysDateAndTime, which
would provide a useful alternative.

We left out every optional part of the MIB that
we did not need. This includes the smCodeTable, the
smExtsnTable, and the ability to suspend and resume
scripts. We also did not implement the notifications. At
least smScriptAbort is required by RFC 2592, so in this
respect we are not compliant.

Some Extensions

We found that the Script MIB provided nearly all of the
functionality that we needed. There were a few areas
where it did not provide an explicit way to do what we
wanted, but we were able to find ways to contort the
implementation slightly to add the functionality without
introducing major changes regarding the Script MIB
specification.

We wanted it to be possible for scripts to be launched
automatically every time the device booted. Scripts
that provide network services fall into this category,
for instance. Our solution was simply to decree that
any launch button whose name begins with a “*” is
automatically “pushed” when the system starts. This

uses the existing mechanisms to define the parameters
of the start-up script, such as its arguments and its
allowed life-time. It also means that the same script can
be launched any number of times on startup, perhaps
with different arguments, for instance a network service
that listens on several different ports.

We were also concerned that there was no way to
launch a script without specifying an expire time for
it. The maximum specifiable expire time is 2147483647
centiseconds, about 248 days, which was a little too finite
for our liking. So when this maximum value is specified
our implementation treats it as infinite.

An extension we considered was to include more script
meta-data in the MIB. In our implementation, all scripts
share the same Java namespace (with Java’s notion of
packages being used to avoid clashes) so one script can in
theory use code from another script. This means that it
could be useful to provide information about interscript
dependencies, so that for instance we do not delete a
script when there are other scripts present that depend
on it. The way we considered doing this was to encode
the information in the smScriptDescr object. In the end
we decided that dependencies were better handled by
the manager program, even though this means that it
has to keep information about every script that has ever
been downloaded in the past.

We also considered adding version information in the
smScriptName object. This would mean that we could
not look a script up in the smScriptTable just by using
indexing, but would be forced to traverse part of the
table to find what we were looking for. By putting the
version string after the script name and ensuring that it
is always the same length, we could traverse a sub-tree
of the OID namespace to find any versions of a script. So
far versioning has not been a problem and we have not
dealt with it.

Problems and Solutions

1. Scanning for Java:
In discussions on the DISMAN mailing list, some
people have found that the way script languages
are specified (by a target-dependent index into the
smLangTable) is clumsy. We did not find this to be a
problem, though. Just before downloading a script
you scan through the smLangTable to find the index
you are looking for. The table is unlikely to be big (it
has exactly one entry in our implementation) so this
does not take long.

2. Setting smLaunchStart to 0:
The Script MIB specifies that if the smLaunchStart

object in a launch button is set to 0, a script instance
is created in the smRunTable with any available

VOLUME 7, NUMBER 2 NOVEMBER, 1999

The Simple Times 8

smRunIndex. We implemented this functionality but
do not use it. Since SNMP running over UDP is un-
reliable, if you do not get an acknowledgment to the
set of smLaunchStart you have no way of knowing if
the script actually was started. We have no use for
unreliable script launches; others may, for instance
in conjunction with the DISMAN-SCHEDULE-MIB.

3. Lost acknowledgment to smLaunchStart:
If you set smLaunchStart in order to start a script
but do not get an acknowledgment, then you do
not know whether it was your request or the corre-
sponding reply that was lost. It is important not to
use a blind SNMP retransmit strategy in this case.
If you resend the set request and it was actually
the reply that was lost, then you will most likely
get back an error because you are trying to reuse
an existing smRunIndex. The right thing to do is to
look in the smRunTable to see if the script you tried
to launch is there. If not, it was indeed the request
that was lost and you must retransmit it.

The smCodeTable

The only area where we found the design of the Script
MIB unsatisfactory was the smCodeTable. We did not
implement this optional part of the MIB, but we would
have liked to have something like it. The advantage
would be that a manager who has a script in a file
somewhere can download it directly to the SNMP client
without having to set up access through an FTP or HTTP
server. SNMP is not very well adapted for bulk data
transfer, especially in the manager-to-agent direction, so
this would be convenient but somewhat slow. But the
specification of the smCodeTable implied much too much
extra code and data for us to implement it.

The problem with the smCodeTable is that it has been
constructed to make it possible to edit a script “in place,”
that is, to issue SNMP set requests that modify parts
of the text of a script that has been downloaded at an
earlier time. An agent does not have to provide the
smCodeTable, but if it does then it must also provide this
editing capability.

It is not clear that being able to read back a script
previously loaded into the device is useful, but one can
certainly imagine circumstances where one would want
to know exactly what is running in the managed system.

But it is very hard to imagine circumstances where
one would want to make modifications to part of a script.
A manager that is a program would never do this: it
would read the script out, modify it, then send it back;
or it would just push a new version of the script.

So it looks as if the only use for in-place modification
is to allow humans to tweak scripts by issuing low-level

SNMP commands. Most humans will not want to do that
- they will want to edit the script on a workstation and
send back the edited version.

Even humans who do want to edit scripts directly
within the agent will be severely limited in what
they can do. Scripts are divided into “lines” in the
smCodeTable; these lines are indexed by line numbers
that are assigned by the manager when the script is
downloaded and cannot subsequently be changed. You
will only be able to insert a new line if there is a gap
in the line numbering, which means this must have
been anticipated when the script was downloaded. And
you can only insert as many new lines as the gap
allows. People were prepared to deal with this sort of
environment on microcomputers twenty years ago, but
they are not now.

The point here is that providing this editable
smCodeTable is not without cost. An agent has to keep
the whole table for as long as the script is present, or
at least it has to keep the smCodeIndex values and the
mapping from them into offsets in the script. Small-
system developers that want to provide code pushing
will resent this overhead. “Scripts” are not necessarily
20-line one-off Tcl programs: they can be substantial
binaries, or big Java packages, that will already be
pushing the limits of the machine without adding extra
permanent overhead that is only used during download.
(I acknowledge that big down-loads are better done by
pulling, or yet another protocol, rather than lock-step
SNMP packets.)

Here is how we think code pushing should work:

� Entries can only be added to the smCodeTable be-
fore the corresponding smScriptAdminStatus is “en-
abled.”

� The first entry to be added to the smCodeTable

must have smCodeIndex 1, and every subsequent
entry must have smCodeIndex one more than the
current largest value. Each entry must have its
smCodeRowStatus set to “active” before any subse-
quent entry can be added. Entries once added to the
smCodeTable cannot be deleted.

These constraints mean that during download the
agent does not have to store smCodeRowStatus or
smCodeIndex values anywhere. It does have to
remember where each smCodeText object is within
the script, but only while the script is being pushed.

� Once the script has been pushed, the man-
ager sets the smScriptAdminStatus to “enabled.”
As at present, the fact that the code comes
from the smCodeTable is indicated by an empty

VOLUME 7, NUMBER 2 NOVEMBER, 1999

The Simple Times 9

smScriptSource and an smScriptStorageType that
is “volatile.”

� When the smScriptRowStatus is set to “active,” an
agent may choose to delete the smCodeTable, or it
may reorganize it so that the same code is presented
using a different division into smCodeText objects. In
particular it may decide to chop up the presented
text into fixed-length smCodeText objects so that it
does not have to remember the offsets correspond-
ing to smCodeIndex values. This means that the
smCodeTable takes up no storage: the agent can
construct replies to SNMP get requests on the fly.

If the smScriptStorageType is then made non-
volatile, the script text will be written to non-
volatile storage.

� The only way to modify the text of a script after it
has been downloaded is to delete the smScriptEntry

and create a new one.

Conclusions

The Script MIB is well adapted to bigger machines such
as workstations and servers. Our experience has shown
that it is also quite well adapted to smaller devices, with
few exceptions.

Script MIB Performance Analysis
Frank Strauß, TU Braunschweig

This article presents an analysis of time and memory
consumptions of the Java Script MIB Implementation
(Jasmin), developed in a joint project between the Tech-
nical University of Braunschweig and NEC C&C Re-
search Laboratories Berlin. We have evaluated some
usage examples from RFC 2592 and their time contin-
gent spent in the Jasmin specific SMX operations, that
are documented in RFC 2593. We also present some
scalability studies under increasing load of concurrently
running scripts.

Jasmin Architecture

The purpose of the Jasmin implementation is to evaluate
the IETF Script MIB. Jasmin has a modular architecture
to increase flexibility and extensibility as shown in
Figure 1.

The left side in Figure 1 shows the part which depends
on the SNMP toolkit in use. The current Jasmin version
uses the EMANATE SNMP agent toolkit from SNMP
Research. A future version will add support for the
UCD SNMP toolkit. The Script MIB interface is realized

management
master agent

jasmin kernel

handling

interf.agent
sub- SMX

config

timer / event

core Script MIB implementation
(toolkit independent)

(toolkit dependent)
Java Virtual

Machine

Tcl
interpreter

runtime enginesmaster agent
and sub-agent

V
A

C
M

SNMP

storage
script

further
 engines ...

Figure 1: Jasmin Architecture.

as a separate sub-agent. The central part of Figure
1 shows the toolkit independent Jasmin kernel and
related parts. The Jasmin kernel communicates with
the runtime engines (right side of Figure 1) through
the Script MIB Extensibility Protocol defined in the Ex-
perimental RFC 2593. This lightweight ASCII protocol
allows to separate language specific runtime engine(s)
from the Jasmin kernel, so that new runtime engines
can be added easily. Currently, there is only a single
runtime engine which is based on a Java virtual ma-
chine and executes management scripts written in Java.
For more information about the Jasmin prototype, visit
http://www.ibr.cs.tu-bs.de/projects/jasmin/.

Measurement Environment and Goals

There are many parameters in a Script MIB aware
management environment that have a substantial im-
pact on different performance aspects. Since only some
characteristics of the Jasmin agent are of interest for
this analysis, a few parameters were kept fixed during
all measurement scenarios. All measurements have
been made on a Sun Ultra-1 Model 140 agent host with
128 MBytes of physical memory running Solaris 2.5.1.
An equivalent machine ran a set of manager side Tcl
scripts to stimulate the agent. Both machines were
otherwise unloaded and connected to a lightly loaded
100 MBit/s Ethernet segment.

Our major interests in this analysis have been:

� the time spent on typical operations on Script MIB
tables, e.g. installing a script, starting a script, or
retrieving the result of a running script,

� the time spent in single SMX commands sent by the
Jasmin sub-agent to the Java runtime engine, pro-
cessed by the runtime engine, and finally answered
by the runtime engine with an SMX response,

� the amount of memory consumed by the Jasmin
sub-agent and the Java runtime engine while many
scripts are running concurrently.

VOLUME 7, NUMBER 2 NOVEMBER, 1999

The Simple Times 10

The response times of Script MIB operations have
been measured within the stimulating manager script.
The SMX operations have been monitored by instru-
menting the Jasmin code near the read/write system
calls. Finally the memory consumptions of the Jasmin
agent and the Java runtime engine have been monitored
by regular ps(1) output while another Tcl script stim-
ulated the agent. In all cases, very short Java scripts
have been used that do nearly nothing other than sleep
because we did not want to stress test the Java engine,
but rather the Jasmin Script MIB implementation.

Script MIB SNMP Operations

The first analysis is concerned with the times spent for
typical operations on the Script MIB tables. These op-
erations are documented as usage examples in chapter
7 of RFC 2592. We now call them “procedures” to avoid
confusion with single SNMP operations, since some of
these procedures require a number of SNMP operations
and/or polling a particular variable until a certain value
indicates the termination of asynchronous actions at the
agent side.

The following procedures have been analyzed. The
most interesting and frequently used procedures are
shown in Figure 2.

� Installing a Script:
This procedure issues three SNMP SetRequests to
fill up a new row in the smScriptTable and to initi-
ate the retrieval of a script from a given URL. Then
the manager has to poll the smScriptOperStatus

object until the value of enabled indicates that the
script has been fetched successfully. This procedure
is documented in section 7.2 of RFC 2592. The
time spent in this procedure mainly depends on
the HTTP or FTP infrastructure that is used to
fetch scripts. This is the reason why we do not
present this time in Figure 2. However, on our
100 MBit/s Ethernet LAN where a fairly loaded Sun
Ultra-30 Model 295 serves the HTTP requests, we
get installation times of approximately 230 ms for a
very small script of 2.7 kBytes.

� Deleting a Script:
This procedure first sets the smScriptAdminStatus

to disabled. Then it polls smScriptOperStatusuntil
it reflects this change. Finally, the row gets deleted
by setting smScriptRowStatus to destroy. This
procedure is documented in section 7.4 of RFC 2592.
It takes approximately 88 ms to complete.

� Creating a Launch Button:
This procedure creates, fills, and enables an entry in

the smLaunchTable by sending three SNMP SetRe-
quests. Then it has to poll smLaunchOperStatusuntil
a value of enabled indicates the successful creation
of the new launch button. This procedure takes
approximately 95 ms to complete. It is documented
in section 7.5 of RFC 2592.

� Deleting a Launch Button:
This procedure sets the smLaunchAdminStatus to
disabled and then polls smLaunchOperStatus until
it reflects the change. Finally, the row gets deleted
by setting smLaunchRowStatus to destroy. This
procedure is documented in section 7.8 of RFC 2592
and takes approximately 19 ms to complete.

� Starting a Script:
To initiate the start of a script, the manager sends
a single SetRequest on an smLaunchStart object.
We do not retrieve a free smRunIndex beforehand,
as it is suggested as an alternative in section 7.6.
However, afterwards we poll the smRunState object
until a value of executing reflects that the script
has been started successfully. This is required,
because the SNMP response to the SetRequest just
signals the successful creation of an smRunTable row.
However, a script might not have been started due to
a runtime system error. Note that this smRunState

polling is not (yet) suggested in section 7.6 of RFC
2592. This procedure takes on average 1130 ms
when the first script is launched, while subsequent
scripts take approximately 74 ms to start. This
reflects the fact that the Jasmin agent has to start
the Java runtime engine along with the first script.

� Aborting, Suspending, and Resuming a Script:
To abort a running script, the manager sets the
smRunControl object to abort. Then it polls the
smRunState object until the value of terminated re-
flects that the script has been aborted. Similarly, the
manager writes the values suspend or resume to the
smRunControl object and polls the smRunState object
until the value of suspended or executing indicates
the successful state change. Again, note that the
polling, which is used to ensure that the procedure
has been successful, is not (yet) documented in RFC
2592, section 7.7 on aborting a script. Suspending
and resuming are not described at all in chapter 7.
The time spent for these three procedures is around
40 ms.

� Retrieving State and Result of a Running Script:
To retrieve the state and result of a running script,
the manager simply issues a single GetRequest on
smRunState, or smRunResult, respectively. This does
not involve the running script in the Java runtime

VOLUME 7, NUMBER 2 NOVEMBER, 1999

The Simple Times 11

engine. Instead, the Jasmin kernel just returns the
values from its local copies of the script state and
result variables. Hence, these procedures are very
fast. They take around 6 ms and represent the
minimum time needed for an SNMP operation on
the Jasmin agent.

0

20

40

60

80

100

120

Create
Launch

Start
First

Start Get
Result

Get
State

Suspend Resume Abort

T
im

e
(m

s)

1130ms

Figure 2: Duration of some procedures on the Script MIB.
Error bars indicate the standard derivation.

SMX Operations on the Java Runtime Engine

The following analysis allows us to get an impression
of the times spent in the Java runtime engine’s opera-
tions by measuring the time between sending an SMX
command and receiving the appropriate response back
from the runtime engine. Furthermore, it gives us an
estimate for the overhead induced by the SMX protocol.
The results are shown in Figure 3.

� hello - 211: The hello command must be answered
by the runtime engine with a 211 response to au-
thenticate itself. This command is issued once at the
startup of every runtime engine, so that its costs do
not matter a lot. This command takes about 65 ms
to complete.

� start - 231: The Jasmin agent uses the start

command to launch a new script in the runtime
engine. On success, the runtime engine sends back
a 231 response. The time spent for this command is
on average 42 ms.

� suspend/resume - 231: These commands can be used
by the Jasmin kernel to suspend and resume a
running script within the runtime engine. Both
commands are answered with a 231 status response.
They take about 17 ms to complete.

� abort - 232: To terminate a running script, the
Jasmin kernel may send an abort command. On
success, the runtime engine sends back a 232 re-
sponse. This command takes on average 28 ms.

Intermediate status change and result information is
sent asynchronously from the runtime engine to the
Jasmin kernel, so that there are no command round-trip
times to measure in this case.

Note that SMX commands are processed asyn-
chronously by the Java runtime engine. Therefore, our
test script paused between the stimulating operations,
so that the runtime engine had to process at most one
SMX command at any time.

0

20

40

60

80

100

120

hello start suspend resume abort

T
im

e
(m

s)

Figure 3: Duration of SMX operations on the Java runtime
engine. Error bars indicate the standard derivation.

Scalability

In a final analysis we installed 200 instances of a single
script in the smScriptTable, created 200 launch buttons
in the smLaunchTable and started 200 instances to ap-
pear in the smRunTable. Although, these numbers might
be of questionable significance in many environments,
they uncovered two interesting points.

First, we have seen that the current Jasmin im-
plementation does not scale well at high numbers of
concurrently running scripts: The Jasmin kernel queries
the runtime engine(s) for the status of every script at
regular intervals. At about 130 scripts (that do nothing
but sleep), the Java runtime engine was completely
busy with answering SMX status commands. SMX
commands trying to start further scripts timed out.

Second, the memory allocated by the Jasmin sub-
agent did not increase significantly while the Script
MIB tables have been filled up. It grew to not more

VOLUME 7, NUMBER 2 NOVEMBER, 1999

The Simple Times 12

than 2.5 MBytes. In constrast to the sub-agent, the
Java runtime engine allocates approximately 6 MBytes
at startup. Additionally, for every running script it
allocates approximately 50 kBytes, even for our small
test script that contains no notable variables or other
runtime state information.

Conclusions

The most frequently used operations on the Jasmin
Script MIB implementation perform reasonably well.

The startup time of the first script of any language
is significantly longer than for subsequent scripts of the
same language. This might be reduced by starting the
runtime engine(s) at agent startup or at creation of a
script or launch button of that language. Anyway, this is
considered to be less important in most cases.

The status polling between the Jasmin sub-agent and
the runtime system(s) for running scripts does not scale
well. It should be considered to change the polling inter-
val rules or to completely drop SMX status polling, since
irregular situations can be signaled asynchronously by
the runtime engine, anyway.

The runtime engine’s memory consumption might be
optimized for concurrently running instances of the
same scripts.

In the usage examples of RFC 2592 some additional
procedures and operations in procedures have been iden-
tified that would be of value to management application
developers. They have been submitted to the DISMAN
working group.

Practical Experiences with Script
MIB Applications

Jürgen Quittek, NEC Europe Ltd.
Cornelia Kappler, NEC Europe Ltd.

This article reports on some experiences gained while
building simple management applications with the IETF
Script MIB. We discuss three applications with scripts
acting as mid-level managers. Mid-level managers act
in two roles: acting as agent they provide information
to higher-level managers; acting as manager they access
other agents. We built our applications with the Jasmin
Script MIB implementation described already in the
previous article in this issue of The Simple Times. This
implementation provides a Java runtime environment
for scripts, so all our scripts are written in Java.

Distributed Monitoring

Distributed monitoring is a fundamental application of
distributed management. When the number of nodes
to be monitored becomes too large to be handled by
a single central manager, you distribute the work of
monitoring among a set of mid-level managers, each of
them monitoring a different subset of the nodes. For
coordination and central processing of the monitoring
results, each mid-level manager communicates with a
top-level manager.

Centralized Monitoring Distributed Monitoring

Figure 4: Centralized versus distributed monitoring.

This way, the scalability of a monitoring application
can be increased significantly. We studied distributed
monitoring with the Script MIB by writing a small test
application. The intention was to monitor the system
load on managed nodes in several subnets of a LAN. We
installed one monitoring script in each subnet.

Our first observation was that, although we consid-
ered the problem to be small, our script was not. The
problem we encountered was that the script needs to
send SNMP requests to the set of nodes it is expected
to monitor. Since Java itself does not have support for
SNMP, the script needed to carry its own implementa-
tion of an SNMP protocol engine, if no specific support
is offered by the runtime environment. This is not
a problem for the developer, because appropriate class
libraries are available, but the resulting size of the script
is about 500 kB. We considered this size rather large,
especially if you plan to run more than one script on the
same node.

Our recommendation resulting from this experience
is that a script runtime environment should provide
an SNMP protocol stack which can be used by all
scripts. The Script MIB already contains a table, the
smExtsnTable, which informs the user about installed
libraries or language extensions, such as a Java SNMP
class library or the Scotty extension for Tcl. Our dis-
tributed monitoring script shrank from 500 kB to 5 kB
after extending the runtime environment by an SNMP
class library.

The second observation concerns the limitation of
the communication facilities between the script and its

VOLUME 7, NUMBER 2 NOVEMBER, 1999

The Simple Times 13

manager. The Script MIB supports notifications, a result
string, and an exit code. The result string can be written
during script execution and at script termination. Each
write action overwrites the previous value.

As output, our script produces a comma-separated
list of host addresses and system load values, which is
written to the result string once per monitoring interval.
The top-level manager can poll this String whenever
it wishes to do so. This procedure was acceptable for
monitoring just one managed object per node. However,
if we are going to extend monitoring to more objects,
other communication facilities would be quiet helpful.

An obvious solution would be providing the monitoring
results as a table of managed objects, but this requires
either an SNMP agent implementation by the script
itself, or other support, such as AgentX (RFC 2257).
However, even if an SNMP stack is provided by the
script runtime environment, we would prefer AgentX,
because this results in less complex scripts.

Decentralized Active Service Testing

With a decentralized active service testing application
we tested availability, response time and other param-
eters of a network service from a user’s perspective.
Different to tests performed at the server or at a network
management station these tests show the parameters
(quality) of the service as they are delivered to the user
and not as they are available somewhere else. In order to
do such tests, test routines must be executed at or close
to the user’s location, e.g. at an ISP’s point of presence.
We call service testing active when it simulates user
behaviour rather than passively monitors transactions.

Together with the Technical University of Braun-
schweig, we developed a demonstrator illustrating a
service testing scenario. This demonstrator measures
the access time to a particular web server from several
hosts in different subnets. At each host, a service
testing script periodically measures the time it takes
to download a specified page from the web server. The
measured time is written to the result string in the
Script MIB. The central manager regularly polls this
string at all hosts and visualizes it on a map together
with the location of the hosts and the web server.

As with distributed monitoring described above, we
are limited by the fact that the Script MIB allows only
for a single string as result of a script. When measuring
a single parameter of a single service, the result string
is sufficient, but we expect a real world service tester to
perform a more complex task and deliver more complex
results. Although it would be possible to start a single
script for each parameter of each service, we would not
recommend this solution for overcoming the limitations

of the result string. Writing each result in an individual
MIB object accessible via AgentX appears to be more
appropriate. Therefore, we would recommend for SNMP
agents implementing the Script MIB also to implement
the AgentX protocol.

Decentralized active service testing can be applied in
several other scenarios. We intend to examine some of
them in the real world, collaborating with an ISP:

� An ISP offering Internet access might install scripts
for testing the time needed for downloading a partic-
ular web page. This scenario is already prototyped
by our demonstrator.

� On-line stores might ask their ISP to guarantee
that a maximum processing time for customer’s
input will not be exceeded, in order to prevent the
customers from clicking away to competitors. A
script could test the current processing time from
the user’s perspective.

� An enterprise might reserve a VPN between local
sales agents and a central data base containing
customer and product information. It requires a
guaranteed access time to this data base from all
locations, that can be supervised by a script.

� Customers may want to measure and supervise
the QoS they receive themselves. They could be
provided with a GUI for starting scripts monitoring
their QoS.

Distributed Service Management

This application deals with installing, starting, monitor-
ing, and updating services on a managed node. Our test
application manages the installation and configuration
of an MPLS (Multiprotocol Label Switching, RFC 2702)
multicast service over ATM. In our network, each MPLS
core switch consists of an ATM switch and an attached
Linux system. The MPLS service is realized by a GSMP
control process running at the Linux system. Via the
GSMP (General Switch Management Protocol) Version
1.1 (RFC 1987) the process controls the switch fabric of
the ATM switch. All native ATM signaling is disabled.

MPLS standardization is not yet completed, although
there are already MPLS product deployed commercially.
The consequence is a need to update your system, when-
ever new standardization efforts result in a new release
of the MPLS control software. Then you have to stop all
running control processes, update and reconfigure the
installation, and start the process again. These steps
have to be made in a very similar way on all MPLS
switches.

VOLUME 7, NUMBER 2 NOVEMBER, 1999

The Simple Times 14

We tried to automate these steps. In a first stage of
automation we developed shell scripts which performed
the required steps. The software to be installed as well
as the required configuration data was provided by a web
server in the switches’ control network. After having
developed the scripts, updating the MPLS service was
done by running

� a script checking the version currently installed,

� a stop script for the running MPLS control process,

� a de-install script for the old software release,

� an install script for the new release,

� a configure script for the new release,

� and a start script for the new MPLS control process.

In the second stage we automated running all these
scripts in a coordinated way on all MPLS switches
concerned. For this purpose we use the Script MIB. A
central management application (written in Java) con-
trols the execution of the scripts via a control network.
The application allows the network operator to start the
control processes on all switches by entering a single
command. Similarly, all other actions described above
can be executed simultaneously on all switches.

An inconvenience of this application was the restric-
tion of our Script MIB implementation to Java as script
language. We had to convert all our shell scripts to
Java which was not a hard job. However, it appeared
to be unnecessarily complicated, because for this pur-
pose shell scripts are the better choice. We considered
developing the scripts in Java in the first stage, but
this appeared to be even more complicated than porting
the scripts to Java. Testing this kind of scripts is less
convenient in Java, because you have to compile them
after each change and you have to wrap the commands
by one or more Runtime.exec() calls. Please note that
these inconveniences with Java appear when dealing
with this kind of scripts. For other scripts, particularly
more complex ones, Java might be a very good choice.

A strange problem we ran into when automating the
software installation was the need to reboot the system,
when the installation included kernel modifications. In
such a situation we have to poll the booting system
until it returnes to normal operation, and then continue
with configuring or starting the service. Here, we would
like to have a possibility to install a script such that it
automatically starts its operation when the SNMP agent
starts. Such a script could be installed just before reboot
and complete the tasks without polling in between.

For this application, the Script MIB’s result string was
sufficient for reporting about successful completion of a

script or for forwarding an error message. This is due to
the nature of the tasks which - originally coded as shell
scripts - do not return more than a string.

Conclusion

Summarizing our experiences, we found that there are
several application scenarios in which the Script MIB
is a valuable tool for distributing management tasks.
Developing scripts in Java went very smoothly, although
we did not like porting shell scripts. For future Script
MIB implementations we would recommend supporting
AgentX and providing an SNMP protocol stack in the
script runtime environment. With AgentX support it
will be possible to investigate also another kind of Script
MIB application, namely agent extensions.

References

[1] White, M., Gudur, S., An Overview of the AgentX
Protocol, The Simple Times 6(1), March 1998.

[2] Quittek, J., Kappler, C. Remote Service Deployment
on Programmable Switches with the IETF SNMP
Script MIB, Proc. DSOM ’99, Zürich, pp. 135-147,
Springer Verlag, 1999.

Standards Summary

Please consult the latest version of Internet Official
Protocol Standards. As of this writing, the latest version
is RFC 2500.

SMIv1 Data Definition Language

Full Standards:

� RFC 1155 - Structure of Management Information

� RFC 1212 - Concise MIB Definitions

Informational:

� RFC 1215 - A Convention for Defining Traps

SMIv2 Data Definition Language

Full Standards:

� RFC 2578 - Structure of Management Information

� RFC 2579 - Textual Conventions

� RFC 2580 - Conformance Statements

VOLUME 7, NUMBER 2 NOVEMBER, 1999

The Simple Times 15

SNMPv1 Protocol

Full Standards:

� RFC 1157 - Simple Network Management Protocol

Proposed Standards:

� RFC 1418 - SNMP over OSI

� RFC 1419 - SNMP over AppleTalk

� RFC 1420 - SNMP over IPX

SNMPv2 Protocol

Draft Standards:

� RFC 1905 - Protocol Operations for SNMPv2

� RFC 1906 - Transport Mappings for SNMPv2

� RFC 1907 - MIB for SNMPv2

� RFC 1908 - SNMPv1 and SNMPv2 Coexistence

Experimental:

� RFC 1901 - Community-based SNMPv2

� RFC 1909 - Administrative Infrastructure

� RFC 1910 - User-based Security Model

SNMPv3 Protocol

Draft Standards:

� RFC 2571 - Architecture for SNMP Frameworks

� RFC 2572 - Message Processing and Dispatching

� RFC 2573 - SNMPv3 Applications

� RFC 2574 - User-based Security Model

� RFC 2575 - View-based Access Control Model

� RFC 1905 - Protocol Operations for SNMPv2

� RFC 1906 - Transport Mappings for SNMPv2

� RFC 1907 - MIB for SNMPv2

Informational:

� RFC 2570 - Introduction to SNMPv3

SNMP Agent Extensibility

Proposed Standards:

� RFC 2257 - AgentX Protocol Version 1

SMIv1 MIB Modules

Full Standards:

� RFC 1213 - Management Information Base II

� RFC 1643 - Ethernet-Like Interface Types MIB

Draft Standards:

� RFC 1493 - Bridge MIB

� RFC 1559 - DECnet phase IV MIB

� RFC 1757 - Remote Network Monitoring MIB

Proposed Standards:

� RFC 1285 - FDDI Interface Type (SMT 6.2) MIB

� RFC 1381 - X.25 LAPB MIB

� RFC 1382 - X.25 Packet Layer MIB

� RFC 1414 - Identification MIB

� RFC 1461 - X.25 Multiprotocol Interconnect MIB

� RFC 1471 - PPP Link Control Protocol MIB

� RFC 1472 - PPP Security Protocols MIB

� RFC 1473 - PPP IP NCP MIB

� RFC 1474 - PPP Bridge NCP MIB

� RFC 1512 - FDDI Interface Type (SMT 7.3) MIB

� RFC 1513 - RMON Token Ring Extensions MIB

� RFC 1514 - Host Resources MIB

� RFC 1515 - IEEE 802.3 MAU MIB

� RFC 1525 - Source Routing Bridge MIB

� RFC 1742 - AppleTalk MIB

SMIv2 MIB Modules

Draft Standards:

� RFC 1657 - BGP version 4 MIB

� RFC 1658 - Character Device MIB

� RFC 1659 - RS-232 Interface Type MIB

� RFC 1660 - Parallel Printer Interface Type MIB

� RFC 1694 - SMDS Interface Type MIB

� RFC 1724 - RIP version 2 MIB

VOLUME 7, NUMBER 2 NOVEMBER, 1999

The Simple Times 16

� RFC 1748 - IEEE 802.5 Interface Type MIB

� RFC 1850 - OSPF version 2 MIB

� RFC 1907 - SNMPv2 MIB

� RFC 2115 - Frame Relay DTE Interface Type MIB

Proposed Standards:

� RFC 1567 - X.500 Directory Monitoring MIB

� RFC 1604 - Frame Relay Service MIB

� RFC 1611 - DNS Server MIB

� RFC 1612 - DNS Resolver MIB

� RFC 1666 - SNA NAU MIB

� RFC 1696 - Modem MIB

� RFC 1697 - RDBMS MIB

� RFC 1747 - SNA Data Link Control MIB

� RFC 1749 - 802.5 Station Source Routing MIB

� RFC 1759 - Printer MIB

� RFC 2006 - Internet Protocol Mobility MIB

� RFC 2011 - Internet Protocol MIB

� RFC 2012 - Transmission Control Protocol MIB

� RFC 2013 - User Datagram Protocol MIB

� RFC 2020 - IEEE 802.12 Interfaces MIB

� RFC 2021 - RMON Version 2 MIB

� RFC 2024 - Data Link Switching MIB

� RFC 2037 - Entity MIB

� RFC 2051 - APPC MIB

� RFC 2074 - RMON Protocol Identifier

� RFC 2096 - IP Forwarding Table MIB

� RFC 2108 - IEEE 802.3 Repeater MIB

� RFC 2127 - ISDN MIB

� RFC 2128 - Dial Control MIB

� RFC 2206 - Resource Reservation Protocol MIB

� RFC 2213 - Integrated Services MIB

� RFC 2214 - Guaranteed Service MIB

� RFC 2232 - Dependent LU Requester MIB

� RFC 2233 - Interfaces Group MIB

� RFC 2238 - High Performance Routing MIB

� RFC 2248 - Network Services Monitoring MIB

� RFC 2249 - Mail Monitoring MIB

� RFC 2266 - IEEE 802.12 Repeater MIB

� RFC 2287 - System-Level Application Mgmt MIB

� RFC 2320 - Classical IP and ARP over ATM MIB

� RFC 2366 - Multicast over UNI 3.0/3.1 / ATM MIB

� RFC 2452 - IPv6 UDP MIB

� RFC 2454 - IPv6 TCP MIB

� RFC 2455 - APPN MIB

� RFC 2456 - APPN Trap MIB

� RFC 2457 - APPN Extended Border Node MIB

� RFC 2465 - IPv6 Textual Conventions and MIB

� RFC 2466 - ICMPv6 MIB

� RFC 2493 - 15 Minute Performance History TCs

� RFC 2494 - DS0, DS0 Bundle Interface Type MIB

� RFC 2495 - DS1, E1, DS2, E2 Interface Type MIB

� RFC 2496 - DS3/E3 Interface Type MIB

� RFC 2512 - Accounting MIB for ATM Networks

� RFC 2513 - Accounting Control MIB

� RFC 2514 - ATM Textual Conventions and OIDs

� RFC 2515 - ATM MIB

� RFC 2558 - SONET/SDH Interface Type MIB

� RFC 2561 - TN3270E MIB

� RFC 2562 - TN3270E Response Time MIB

� RFC 2564 - Application Management MIB

� RFC 2571 - SNMP Framework MIB

� RFC 2572 - SNMPv3 MPD MIB

� RFC 2573 - SNMP Applications MIBs

� RFC 2574 - SNMPv3 USM MIB

� RFC 2575 - SNMP VACM MIB

VOLUME 7, NUMBER 2 NOVEMBER, 1999

The Simple Times 17

� RFC 2584 - APPN/HPR in IP Networks

� RFC 2591 - DISMAN Scheduling MIB

� RFC 2592 - DISMAN Script MIB

� RFC 2594 - WWW Services MIB

� RFC 2605 - Directory Server MIB

� RFC 2613 - RMON for Switched Networks MIB

� RFC 2618 - RADIUS Authentication Client MIB

� RFC 2619 - RADIUS Authentication Server MIB

� RFC 2667 - IP Tunnel MIB

� RFC 2662 - ADSL Line MIB

� RFC 2665 - Ethernet-Like Interface Types MIB

� RFC 2668 - IEEE 802.3 MAU MIB

� RFC 2669 - DOCSIS Cable Device MIB

� RFC 2670 - DOCSIS RF Interface MIB

� RFC 2677 - Next Hop Resolution Protocol MIB

� RFC 2720 - Traffic Flow Measurement Meter MIB

Informational:

� RFC 1628 - Uninterruptible Power Supply MIB

� RFC 2620 - RADIUS Accounting Client MIB

� RFC 2621 - RADIUS Accounting Server MIB

� RFC 2666 - Ethernet Chip Set Identifiers

� RFC 2707 - Print Job Monitoring MIB

IANA Maintained MIB Modules

� Interface Type Textual Convention
ftp://ftp.iana.org/mib/ianaiftype.mib

� Address Family Numbers Textual Convention
ftp://ftp.iana.org/mib/ianaaddressfamilynumbers.mib

� TN3270E Textual Conventions
ftp://ftp.iana.org/mib/ianatn3270etc.mib

� Language Identifiers
ftp://ftp.iana.org/mib/ianalanguage.mib

Related Documents

Informational:

� RFC 1270 - SNMP Communication Services

� RFC 1321 - MD5 Message-Digest Algorithm

� RFC 1470 - Network Management Tool Catalog

� RFC 2039 - Applicability of Standard MIBs to WWW
Server Management

� RFC 2089 - Mapping SNMPv2 onto SNMPv1 within
a bi-lingual SNMP agent

Experimental:

� RFC 1187 - Bulk Table Retrieval with the SNMP

� RFC 1224 - Techniques for Managing
Asynchronously Generated Alerts

� RFC 1238 - CLNS MIB

� RFC 1592 - SNMP Distributed Program Interface

� RFC 1792 - TCP/IPX Connection MIB Specification

� RFC 2593 - Script MIB Extensibility Protocol

VOLUME 7, NUMBER 2 NOVEMBER, 1999

The Simple Times 18

Calendar and Announcements

IETF Meetings:

� 46th Meeting of the IETF
November 8-12, 1999, Washington, DC, USA

� 47th Meeting of the IETF
March 27-31, 2000, Adelaide, Australia

� 48th Meeting of the IETF
July 31- Aug 4, 2000, Pittsburgh, PA, USA

� 49th Meeting of the IETF
December 11-15, 2000, San Diego, CA, USA

� 50th Meeting of the IETF
March 19-23, 2001, Minneapolis, MN, USA

Conferences and Workshops:

� Network Operations and Management
Symposium (NOMS 2000)
April 10-14, 2000, Honolulu, Hawaii, USA

� Workshop on IP-oriented Operations &
Management (IPOM 2000)
September 4-6, 2000, Cracow, Poland

� Workshop on Distributed Systems Operations &
Management 2000 (DSOM 2000)
Austin, Texas, USA

� Integrated Network Management (IM 2001)
May 14-18, 2001, Seattle, WA, USA

Exhibitions and Trade Shows:

� NetWorld + Interop Sydney
November 15-19, 1999, Sydney, Australia

� NetWorld + Interop Las Vegas
May 8-12, 2000, Las Vegas, USA

� NetWorld + Interop Atlanta
September 25-29, 2000, Atlanta, USA

Publication Information

Editors
Aiko Pras University Twente

Jürgen Schönwälder TU Braunschweig
Editorial Board

David Harrington Cabletron Systems Inc.
Keith McCloghrie Cisco Systems Inc.

Bob Natale ACE*COMM
David Perkins SNMPinfo

Randy Presuhn BMC Software Inc.
Steve Waldbusser International Network Service

Bert Wijnen IBM T.J. Watson Research
Contact Information

E-mail st-editorial@simple-times.org

ISSN 1060–6068

Submissions

The Simple Times solicits high-quality articles of tech-
nology and comment. Technical articles are refereed to
ensure that the content is marketing-free. By definition,
commentaries reflect opinion and, as such, are reviewed
only to the extent required to ensure commonly-accepted
publication norms.

The Simple Times also solicits terse announcements
of products and services, publications, and events. These
contributions are reviewed only to the extent required to
ensure commonly-accepted publication norms.

Submissions are accepted only via electronic mail,
and must be formatted in HTML version 1.0. Each
submission must include the author’s full name, title, af-
filiation, postal and electronic mail addresses, telephone,
and fax numbers. Note that by initiating this process,
the submitting party agrees to place the contribution
into the public domain.

Subscriptions

The Simple Times is available in HTML, PDF and
PostScript. New issues are announced via an electronic
mailing list. Send electronic mail to

st-request@simple-times.org

with

subscribe simple-times

in the body if you want to subscribe to this list. Back
issues are available via The Simple Times Web server:

http://www.simple-times.org/

VOLUME 7, NUMBER 2 NOVEMBER, 1999

