
The Simple Times
TM

THE QUARTERLY NEWSLETTER OF SNMP TECHNOLOGY, COMMENT, AND EVENTS
VOLUME 6, NUMBER 1 MARCH, 1998

The Simple Times is an openly-available publication
devoted to the promotion of the Simple Network Man-
agement Protocol. In each issue, The Simple Times
presents technical articles and featured columns, along
with a standards summary and a list of Internet re-
sources. In addition, some issues contain summaries of
recent publications and upcoming events.

In this Issue:

Applications, Tools, and Operations
An Overview of the AgentX Protocol 1
WinSNMP v2.0 - Evolution of an industry-

standard API 7

Featured Columns
Questions Answered 13
Editor’s Comment 17

Miscellany
Standards Summary 18
Calendar and Announcements 20

Publication Information 21

The Simple Times is openly-available. You are free
to copy, distribute, or cite its contents; however, any
use must credit both the contributor and The Simple
Times. (Note that any trademarks appearing herein are
the property of their respective owners.) Further, this
publication is distributed on an “as is” basis, without
warranty. Neither the publisher nor any contributor
shall have any liability to any person or entity with
respect to any liability, loss, or damage caused or alleged
to be caused, directly or indirectly, by the information
contained in The Simple Times.

The Simple Times is available as an online journal in
HTML, PDF and PostScript. New issues are announced
via an electronic mailing list. For information on sub-
scriptions, see page 21.

An Overview of the AgentX Proto-
col

Matt White, Carnegie Mellon University
Smitha Gudur, Management Consultant

This article provides an introduction to the AgentX
(Agent eXtensibility) protocol that was published as an
IETF Proposed Standard in January 1998. Much of
the information in this article is distilled from RFC
2257, which details the AgentX protocol, while the rest
has been gleaned from experiences implementing the
protocol. The AgentX protocol allows multiple subagents
to make MIB information available in a way that is
transparent to SNMP management applications.

AgentX is the first IETF standard-track specification
for extensible SNMP agents. Prior to the publication of
AgentX, users were forced to either use non-standard
solutions or to run multiple SNMP agents on different
UDP ports, probably using proxies to access them via
a standard UDP port. Both approaches have problems.
The lack of a standard often requires that subagent
implementors have to support multiple subagent pro-
tocols if the same subagent is supported on different
operating systems. Proxies are not transparent for the
management station and thus require more intelligence
on the managers side. In addition, running a number of
subagents on a device usually costs less resources than
running the same number of full-featured SNMP agents.
The AgentX protocol provides a standard solution for the
agent extensibility problem. It is designed to be inde-
pendent from any particular SNMP version. An AgentX
subagent will work with an SNMPv1, SNMPv2c and/or
SNMPv3 master agent without any changes. A good
overview of the various non-standard agent extensibility
solutions and the AgentX problem space can be found in
Volume 4, Number 2 of The Simple Times.

The AgentX protocol specifies a method for subagents
to advertise to the master agent the information for
which they are willing to take responsibility. Each
AgentX subagent can operate in its own process space,
providing a more robust alternative to monolithic SNMP
agents. Additionally, processes can provide access to
their internal state via the AgentX protocol, which is
then accessible from a management station via SNMP.

The Simple Times 2

With the complexity of server and application processes
increasing daily, this last point becomes extremely im-
portant. Without a standard way to access the current
state and historical data of server processes, large soft-
ware systems quickly become unmanageable. By mak-
ing this information available through AgentX, we can
use standard SNMP management tools to administer
software systems.

Architecture, Protocol Features and Issues

An AgentX SNMP environment consists of two types of
processes: a master agent and one or more subagents,
communicating with each other either over TCP or a
Unix domain socket. The master agent speaks both
AgentX and SNMP. It is the master’s job to maintain
a table of which subagents are responsible for which
MIB regions. When the AgentX master receives a
request via SNMP, it finds the subagent(s) responsible
for the requested MIB region and dispatches appropriate
AgentX requests. The master itself contains almost no
management information with the possible exception of
information regarding currently connected agents and
allocated MIB regions as described below in the AgentX
MIB.

The AgentX subagents are responsible for providing
access to management information. When a subagent is
started, it contacts the master and registers the various
MIB regions for which it has information. The subagent
has no concept of SNMP or even other subagents so
the AgentX master must arbitrate all conflicts between
subagents. As part of this arbitration service, the
master provides an index allocation service and resolves
overlaps in MIB region registrations in a deterministic
manner. In addition to providing a means with which
to dispatch SNMP requests to subagents, the AgentX
protocol also defines how the master should go about
avoiding and, if avoidance fails, resolving conflicts.

Features
The feature set of the AgentX protocol is designed to
allow the protocol to be transparent to the SNMP man-
agement station and to eliminate any need for subagent
to subagent communication. There are several features
specified in the protocol that make this transparent
operation possible. Arguably the most important of
these features are two-phase commits, index allocation
and registration conflict arbitration.

� Sets operations maintain atomic nature. SNMP
Sets are atomic all-or-nothing operations. AgentX
preserves this property, even when the OIDs spec-
ified in a Set request are registered by different

subagents. This functionality is obtained through
the use of two-phase commits.

� Index allocation. The master agent is responsible
for providing non-conflicting table indices so that
multiple subagents can provide access to manage-
ment information in separate rows of the same
table. As long as all subagents use the master to
allocate indices in a table before registering them,
we can guarantee that there will be no registration
conflict.

� Registration conflict arbitration. The master agent
is also responsible for resolving any registration
conflicts that arise by subagents attempting to reg-
ister duplicate and/or overlapping MIB regions. The
resolution process gives preference to subagents
registering the most specific region and then by a
priority variable that is included in the registration
PDU.

The AgentX MIB
The AgentX MIB is not a part of RFC 2257 but is rather
an Internet Draft being discussed within the AgentX
working group. It is therefore possible that the MIB
changes before it goes on the standards track.

The AgentX MIB allows managers to identify the
number of subagent sessions that are open with the
master agent. It can identify the MIB regions or MIB
objects that a subagent implements. Managers can
gather statistics and operational parameters such as the
timeout interval for responses from a subagent and can
determine the priority at which a subagent registered a
particular MIB region.

The AgentX MIB is organized into four groups with
three tables.

� The agentxGeneral group provides information
about the master agent’s AgentX support, including
the protocol version and transport mechanisms.

� The agentxConnection group provides information
describing the current set of connections capable of
carrying AgentX sessions. The heart of the agentx-
Connection group is the agentxConnectionTable,
which is defined as follows:

AgentxConnectionEntry ::= SEQUENCE {

agentxConnIndex Unsigned32,

agentxConnOpenTime TimeStamp,

agentxConnTransportDomain TDomain,

agentxConnTransportAddress TAddress,

agentxConnSessions Gauge32

}

VOLUME 6, NUMBER 1 MARCH, 1998

The Simple Times 3

� The agentxSession group provides information de-
scribing the current set of AgentX sessions. The
heart of the agentxSession group is the agentxSes-
sionTable:

AgentxSessionEntry ::= SEQUENCE {

agentxSessionIndex Unsigned32,

agentxSessionObjectID OBJECT IDENTIFIER,

agentxSessionDescr Utf8String,

agentxSessionAdminStatus INTEGER,

agentxSessionOpenTime TimeStamp,

agentxSessionAgentXVer INTEGER,

agentxSessionTimeout INTEGER

}

Entries in the session table exist in a many-to-one
relationship with entries in the connection table.

� The agentxRegistration group provides information
describing the current set of registrations. The
heart of the agentxRegistration group is the agentx-
RegistrationTable:

AgentxRegistrationEntry ::= SEQUENCE {

agentxRegIndex Unsigned32,

agentxRegContext OCTET STRING,

agentxRegStart OBJECT IDENTIFIER,

agentxRegEnd OBJECT IDENTIFIER,

agentxRegPriority Unsigned32,

agentxRegTimeout INTEGER,

agentxRegInstance TruthValue

}

Entries in the registration table exist in a many-to-
one relationship with entries in the session table.

The relationships between these tables are expressed
in the indexing structure. The agentxConnectionTable
is indexed by agentxConnIndex, the agentxSessionTable
by agentxConnIndex and agentxSessionIndex, and the
agentxRegistrationTable by agentxConnIndex, agen-
txSessionIndex and agentxRegIndex.

Security Issues
The AgentX protocol has no built in access control
method to control the registration process. That means
that any agent that connects to the master can register
whatever region it desires. A malicious user could
exploit this lack of access control to provide false in-
formation to the SNMP management console. Where
the transport itself provides access control, such as
Unix domain sockets, this is not an issue since there is
adequate security provided at a lower layer. When TCP
is used as the transport for AgentX there is no reliable

way to prevent malicious subagents from connecting to
the master.

AgentX has a notion of context just as SNMP does.
Even though there is no way to prevent a malicious
subagent from connecting to a master when TCP is
the transport, unauthorized subagents can be prevented
from providing access to misinformation for a manager.
Using contexts to prevent malicious registrations pro-
vides some weak security as long as care is taken not
to advertise contexts.

Fortunately, there are implementations of Unix do-
main sockets for all major platforms, including Microsoft
Windows(tm). Unix domain sockets provide access con-
trol and an authentication mechanism (the subagent
socket is owned by the subagent process’ user). Since
AgentX is primarily a means of inter-process commu-
nication, Unix domain sockets provide an appropriate
transport with sufficient security from unauthorized
connections.

Other Considerations
AgentX is primarily a protocol for inter-process commu-
nication between the master and its subagents. It is not
intended to be used over a network wire, although it can
be. There are a number of design decisions that reflect
this fact that are noted in RFC 2257. The most notable
of these is the protocol default of using machine byte
ordering instead of network byte ordering. The subagent
defaults to its platforms’ native byte ordering and then
communicates this choice to the master.

Other decisions that reflect the nature of this protocol
are the 32-bit alignment of data and large PDU sizes.
The large PDU sizes in particular provide lower protocol
overhead in a way that might not be practical over a local
area or wide area network.

AgentX Protocol Flow

In this section we will discuss the interaction between
the AgentX master and subagent in more detail. This
is not intended to be an in depth explanation of the
workings of AgentX and, as such, does not detail every
eventuality in an AgentX session. Interested readers
should read RFC 2257 for more information.

PDU Description
Each AgentX PDU contains a 20-byte header. The
first 32 bits of the header contain the protocol version
number (currently 1), the PDU type, an 8 bit flags field
and an 8 bit reserved field. The flags currently in
use are INSTANCE_REGISTRATION, NEW_INDEX, ANY_INDEX,
NON_DEFAULT_CONTEXT and NETWORK_BYTE_ORDER. The
AgentX Register PDU uses INSTANCE_REGISTRATION;
the AgentX IndexAllocate PDU uses NEW_INDEX and

VOLUME 6, NUMBER 1 MARCH, 1998

The Simple Times 4

ANY_INDEX. The NETWORK_BYTE_ORDER flag is used by the
subagent to communicate its platforms’ native byte or-
dering to the master.

The NON_DEFAULT_CONTEXT flag alerts the recipient
that an octet string follows immediately after the header.
The use of this context field is implementation de-
pendent but may refer to an SNMP context or some
mapping between contexts done by the master agent.
The implementation of non-default contexts is optional.

The remaining 16 bytes are organized into four 32-
bit words. These fields are sessionID, transactionID,
packetID and payload length. The sessionID identifies
a session created by the subagent. The transactionID
refers to the SNMP request that this AgentX PDU is
servicing. The packetID is used to pair AgentX request
and response PDUs. The payload length is simply the
length of the remainder of the PDU, in bytes.

Following the PDU header is a payload of some sort.
The length and makeup of this payload depends on the
type of AgentX PDU being sent. An exact description
of each of the 18 AgentX payload types is beyond the
scope of this article. Interested readers may find this
information in RFC 2257.

Opening a Session
Once a connection has been established between a sub-
agent and master, the subagent is free to establish
one or more sessions with the master. Sessions are
opened with the AgentX Open PDU. The Open PDU
contains a default timeout value for the session, an
OID to associate with the session and a description of
the session. The session identifier in an Open PDU is
ignored. The use of the session OID and description
fields are implementation specific, but may be used to
populate the sysORTable RFC 1907.

When an AgentX master receives an Open PDU from
an attached subagent, it assigns an unused session
identifier and creates an AgentX Response PDU with
the session identifier set to the new session number.
The response is sent to the subagent and the session is
considered open.

At any time a subagent can send an AgentX Close
PDU in order to disconnect a session from the master
agent. When the master agent receives an AgentX
Close PDU, it flushes its pending queue for that session,
de-allocates all indices, unregisters all OID regions and
then closes the session. The master agent may send an
AgentX Close PDU to a subagent as the result of an
SNMP management request. In this case, the master
agent sends an AgentX Close PDU to the subagent with
the reason set to ‘reasonByManager’.

Index Allocation
Index allocation is a service provided by the master

to allow registration of the rows of a conceptual table
within a MIB. For instance, if the subagent wishes to
register a row of ifTable (RFC 2233), it might request
an index allocation for the column ifIndex. Depending
on the parameters of the request, the master agent
will either attempt to issue a specific index, a currently
unused index or a never used index in this table. If an
index of the type requested is available, it is returned to
the subagent in an AgentX Response PDU.

Multiple indices may be requested in a single AgentX
IndexAllocate PDU. In the case of multiple allocations,
all indices must be successfully processed before any
indices are allocated. If the allocation fails, the master
returns an AgentX Response PDU indicating the offend-
ing allocation request.

Presumably after a subagent has successfully allo-
cated an index, it will then follow up with a registration
request. Since registration does not look at index allo-
cation, it is possible that a registration of an allocated
index will fail due to a poorly behaved subagent register-
ing an index that it has not first allocated. In this case,
the subagent should attempt to allocate another index
and repeat the registration process.

If a subagent does not continue to require control
of an index, it may be released with an AgentX In-
dexDeallocate PDU. This releases the index back into
the pool that may be allocated but does not unregister
any OIDs that are within the subagent’s authoritative
region. Therefore, the subagent should unregister all
regions underneath an index before releasing the index
itself.

In practice, none of this is usually necessary. A
subagent will generally connect to a master and will
remain connected and relatively static for the remainder
of its life. A well-behaved subagent will close sessions
before shutting down, but that obviates the need to
deallocate indices and unregister regions because that
is taken care of as part of the Close PDU’s processing.

OID Registration
When a subagent wishes to declare itself authoritative
for a set of OIDs, it sends an AgentX Register PDU
to the master agent. Depending on the OID range
being registered, it may be necessary for the subagent
to allocate the index being registered. A registration
succeeds if it does not cause ambiguity as to which
subagent is authoritative for a region. Authoritativeness
is determined as follows:

1. The most specific registration is authoritative. That
is, the registration with the longest OID. Ranges
do not count towards specificity. For example,
1.3.6.1.2.1.2.2.1.[1-14].1 is no more specific than

VOLUME 6, NUMBER 1 MARCH, 1998

The Simple Times 5

1.3.6.1.2.1.2.2.1.[1-22].1 and may be rejected if au-
thoritativeness cannot be determined via rule 2.

2. When authoritativeness cannot be determined from
rule (1), the registration with the lowest priority
value is considered authoritative. If a subagent
attempts to register a region having the same speci-
ficity and priority as an existing region, the new
registration is rejected as a ‘duplicateRegistration’.

Once the master has determined that a new regis-
tration request will not cause an ambiguity, the new
region is entered into the master’s dispatch table and
an affirmative response is sent to the subagent. Only
one region may be registered in a single PDU, however
multiple OIDs may be specified in a region through the
use of the range subid, reducing the number of Register
PDUs that must be sent. If a subagent wishes to be
authoritative for more than one region, multiple PDUs
must be sent.

As with index allocation, there is an inverse to the
registration process. If a subagent no longer wishes to
respond to an OID region, it should send an AgentX
Unregister PDU with the same OID range as the orig-
inal registration. If the region specified by the unreg-
ister request exactly matches a region allocated to the
session making the unregister request, that region is
unregistered and an affirmative response is sent to the
subagent. If the region being unregistered does not
correspond to a registered region or if that region is not
registered to the session making the unregister request,
the request fails and a ‘notRegistered’ response is sent
to the subagent.

SNMP Get, GetNext and GetBulk
The AgentX Get, GetNext and GetBulk PDUs are the
primary means of servicing the SNMP requests of the
same name. When the master receives an SNMP request
that results in it issuing one or more AgentX PDUs
it will generate a unique transaction ID to identify
the SNMP request. The generated transaction ID is
included in each AgentX PDU sent. All AgentX PDUs
generated as the result of an SNMP request are sent to
the session(s) that is currently deemed authoritative for
the OID(s) being requested.

All AgentX Get, GetNext and GetBulk PDUs make use
of search ranges. A search range contains a starting
OID, an ending OID and an include field which may
either be 0 or 1. There may be other fields in the AgentX
Get, GetNext or GetBulk PDU, depending on the PDU
type.

An AgentX Get PDU may contain one or more search
ranges. If the starting value is instantiated by the
receiving subagent, the value for this instantiation is

written into the response packet. If the OID lookup
fails on the subagent, a response of either ‘noSuchObject’
or ‘noSuchInstance’ is returned for that variable in the
response packet. In either case, processing continues
with the next search range in the AgentX Get PDU.

An AgentX GetNext PDU may also contain one or
more search ranges. If the ‘include’ field of the starting
field is set to 0, then the value returned for that search
range is the closest lexicographical successor to the
starting OID, non-inclusive. If the include field is set
to 1, then the search is inclusive. In either case, if
the ending OID is not null then the object whose value
is returned must lexicographically precede the ending
OID. If no variable is instantiated within the search
range, the returned value is set to ‘endOfMibView’.

SNMP GetBulk requests can either be processed as
multiple AgentX GetNext PDUs or through AgentX
GetBulk PDUs. AgentX GetBulk PDUs allow for more
efficient processing of SNMP GetBulk requests. The
AgentX GetBulk PDU is processed similarly to the
GetNext PDU, but has additional fields that allow the
master to fine-tune the information returned by the
request.

SNMP Set
SNMP Sets are implemented through the use of the
AgentX TestSet, CommitSet, UndoSet and CleanupSet
PDUs. These four PDU types provide the two-phase
commits necessary to provide atomic SNMP Sets across
multiple subagents.

The first stage of SNMP Set processing involves send-
ing one or more AgentX TestSet PDUs to the subagents
specified. The subagents extract the values and test
whether the Set operation would succeed. Since a single
TestSet PDU may include several variables to set, each
one must be checked for validity. If all variables may
be set, then a response is sent back to the master that
the processing for the SNMP Set operation may proceed.
If one of the variables cannot be set, then an error is
returned to the master indicating the offending variable.

The next stage of SNMP Set processing depends on
whether all TestSet PDUs were successful. If all TestSet
requests were successful then the master sends a set
of CommitSet PDUs, which informs each subagent that
they should actually commit the changes to memory.
CommitSet operations should almost always succeed.
However, there is still a chance that they may fail. In
the event that a CommitSet operation fails, the master
agent should send an UndoSet PDU to undo the changes
made by the previous CommitSet operation. The receipt
of an UndoSet PDU by the subagent indicates the end of
SNMP Set processing. If an UndoSet fails, the master
takes no action, which may leave the managed resource
in an inconsistent state. Implementation designers

VOLUME 6, NUMBER 1 MARCH, 1998

The Simple Times 6

should take care that this is an extremely unlikely
event although there are some instances when this is
unavoidable.

If either a TestSet fails or a CommitSet succeeds,
the master agent follows up with a CleanupSet PDU,
indicating the end of SNMP Set processing. No response
is sent to the CleanupSet PDU.

SNMP Traps and Informs
The AgentX Notify PDU provides the ability for a sub-
agent to emit event reports for sending SNMP Traps.
The subagent simply sends a Notify PDU to the master.
What the master agent does with this event report is
implementation specific. A master may send an SNMP
Trap to a configured set of hosts or perform some other
action, like discarding the notification. The SNMPv3
target and notification MIBs (RFC 2273) can be used to
configure target hosts and to setup a notification filter
for these targets. An SNMPv3 Inform may also be sent.
However, there is no way within the AgentX protocol to
inform the subagent whether or not the SNMPv3 Inform
reached its destination(s).

Other AgentX administrative PDUs
The AgentX AddAgentCaps PDU provides a method for
a subagent to modify its capabilities in the sysORTable
(RFC 1907) for a given context. As with the other
registration PDUs, there is an inverse operation, Re-
moveAgentCaps, which can be used to remove agent
capabilities for a context. Agent capabilities are on a
per-session-per-context basis.

The remaining AgentX PDU is the Ping PDU, which
allows a subagent to test a master’s ability to respond
to AgentX requests. If a master fails to respond to a
subagent’s ping, the subagent will have to close and re-
open the session with the master. Due to the multiple
process nature of AgentX, the ability to re-open and re-
register OIDs is an important one for the subagent to
possess.

The CMU AgentX Implementation

One of the authors of this article is also involved with
developing a reference implementation of the AgentX
protocol. A brief description of this work is given
here merely to give a taste of things to come. In the
coming months, we will likely see the release of several
excellent implementations of the protocol, each targeted
at a different customer base. This is one reason why
a standards based approach to agent extensibility is
preferred over proprietary standards.

Carnegie Mellon University has long been active in
the SNMP world. It should come as no surprise then
that we are also interested in AgentX, being a natural

evolution of SNMP. We are currently developing an
AgentX master (which is a Unix daemon process) and a
subagent library under Solaris. The finished product is
expected to run under most modern operating systems
that support Unix domain sockets and POSIX threads.
Target systems include: Solaris, Linux and IRIX, but we
also hope to have code running under FreeBSD, NetBSD
and Windows NT.

The goal of the CMU subagent library is the painless
instrumentation of already existing code. At CMU, we
SNMP instrument just about everything we can manage
and hope to extend that practice with the introduction
of AgentX. When our AgentX library is initialized, it
spawns a thread to handle incoming requests from an
AgentX master and then returns. The subagent is
then free to open sessions with the master, register
OIDs and map OIDs to locations in memory. Some
synchronization routines are provided where there are
sequential dependencies.

When the AgentX thread receives an AgentX PDU
from the AgentX master in response to an SNMP Get,
GetNext, GetBulk or Set request, it looks up each OID
from the PDU in a tree structure stored in memory. The
data in this structure contains a number of user pro-
vided callback functions. These callback functions fill in
the values for Get and GetNext requests. Similarly, Set
processing is done through a series of callback functions.
There will be a set of generic callback functions provided
in the AgentX library for mapping objects to memory
locations.

By providing a simple way of mapping OIDs to loca-
tions in memory, we provide an uncomplicated way to
make accessible whatever variables the system designer
wishes. This interface emphasizes CMU’s focus of in-
strumenting server processes, which would be difficult if
the AgentX instrumentation required constant attention
throughout the server code.

Since this is an implementation in progress, this
information is subject to change at any time. For the
most recent information regarding the CMU implemen-
tation of the AgentX protocol, please visit the Web page:
http://www.net.cmu.edu/projects/agentx/.

Carnegie Mellon’s plans for AgentX
CMU currently runs SNMP instrumented versions of
BIND and our own DHCP server. These SNMP agents
respond to SNMP requests on alternate UDP ports.
With AgentX, we will no longer take this approach
but will rather incorporate AgentX subagents in these
processes. It is also quite likely that we will instrument
other server processes in order to increase our network
information gathering capabilities.

Another place we will make extensive use of AgentX is
our own homegrown network monitoring system called

VOLUME 6, NUMBER 1 MARCH, 1998

The Simple Times 7

NADINE. NADINE consists of a hub process, some
number of monitors and any number of clients. The
monitors post information about what they are monitor-
ing via SNMP. This information is then read by the hub
process and correlated so that related network events
are grouped together in threads. These threads are then
read by the clients, which filter out information that the
user does not care about and leaves only the perceived
root causes of those network situations that the user
does care about. Other information can be read about
a thread by expanding it and viewing the underlying
events that make up the thread.

With the advent of AgentX, all the monitors running
on a system will be able to coexist on the same port,
allowing for more automatic configuration. In addition,
doing an SNMP walk of a machine running monitors
will reveal what events those monitors are currently
tracking on the network. By using our AgentX API,
we will eliminate the current need to constantly service
SNMP requests within our monitor code because this
task is handled automatically by the AgentX library.

Conclusion

The AgentX protocol provides a framework for providing
access to management information via SNMP without
drastically increasing the complexity of the individual
agents. AgentX is invisible to the management station
and so existing tools can be used to gather information
from the subagents. The plug-in architecture keeps
agent design simple while having subagents running in
separate process spaces improves the robustness of the
SNMP system running on a given network device.

While AgentX is not and was never intended to be
capable of supporting every possible subagent configura-
tion, it does support the vast majority of configurations.
By not attempting to do everything, the protocol design-
ers have come up with a protocol that does most things
extremely well while not unduly increasing implemen-
tation difficulty. Hopefully this will lead to a plethora of
implementations, both public domain and commercial.

As the AgentX protocol heads into the last legs of
the standards process, we will begin to see AgentX
implementations appear on various FTP sites as well
as within commercial products. This summer there will
likely be an AgentX interoperability test of different
AgentX implementations. The AgentX working group is
planning to gather implementation experiences and to
complete the AgentX MIB at the 42nd IETF meeting.

Hopefully, with the introduction of AgentX, we will
see a drastic increase in the amount of management
information provided by network devices as well as
increased reliability of those SNMP agents.

WinSNMP v2.0 - Evolution of an
industry-standard API

Bob Natale, ACE*COMM

The WinSNMP API has progressed quite a bit since
The Simple Times published a “sneak peek” overview
of the early design discussions in Volume 2, Number 3
(May/June 1993). This article will outline the overall
progress and detail certain key aspects of the current
version of the API. The presentation is targeted at
SNMP developers and includes a fair amount of tech-
nical detail. For those who may not want to digest the
details right away, a quicker reading will still give you a
good taste of how WinSNMP works. Terms that have a
special meaning in WinSNMP are shown in italics when
first used in this article.

Introduction

The WinSNMP Industry Forum is an open, ad hoc group
of technical contributors interested in the development
of standard SNMP application programming interfaces.
While the subset of active participants has varied from
time to time since its inception in 1993, at crucial
points in the evolution of the WinSNMP specifications
the make-up of that subset has included a significant
number of knowledgeable and experienced SNMP de-
velopers. Virtually all major SNMP “platform” vendor
organizations (notably HP, Cabletron, and IBM) have
played important roles, as has a large body of application
developers. User organizations have generally been
under-represented.

The group released the first production version (1.1)
of the WinSNMP API in June of 1994. A revised version
(1.1a) – with additional clarifying text comprising the
majority of the changes – followed in August of 1995.
This latter version achieved wide deployment, initially
in Win16 environments (Windows and Windows for
Workgroups) and later in Win32 environments (Win-
dows 95 and Windows NT).

Needless to say, with increased use over time sev-
eral opportunities for improvement were identified and,
after a series of “on-list” deliberations, Version 2.0 of
the WinSNMP API was released for deployment at
the beginning of November, 1997. The major changes
incorporated in WinSNMP v2.0 are:

� Support for operating environments other than Mi-
crosoft Windows, via the new SnmpCreateSession()

function.

� Support for agent applications, via the new
SnmpListen() function.

VOLUME 6, NUMBER 1 MARCH, 1998

The Simple Times 8

� Support for transparent SNMPv1 Trap-PDU gen-
eration, in accordance with the Informational RFC
2089.

� Required retransmission and timeout notification
behavior.

� Support for SNMPv2c, via required compliance with
RFCs 1901-1908.

This article will focus on these changes. You may
find it helpful in reading the rest of this article to have
access to the WinSNMP v2.0 Addendum (winsnmp2.txt)
and the standard WinSNMP header file (winsnmp.h)
which you can download from http://www.winsnmp.com,
along with the base WinSNMP v1.1a specification (win-
snmp.doc) and a number of other useful files, sample
source code, and demo applications.

The overall WinSNMP API consists of 46 functions,
divided into six groups:

1. Database Functions:
SnmpGetRetransmitMode, SnmpSetRetransmitMode,
SnmpGetTimeout, SnmpSetTimeout,
SnmpGetRetry, SnmpSetRetry,
SnmpGetTranslateMode, SnmpSetTranslateMode,
SnmpGetVendorInfo

2. Communications Functions:
SnmpStartup, SnmpCleanup, SnmpOpen, SnmpClose,
SnmpSendMsg, SnmpRecvMsg, SnmpRegister,
SnmpCreateSession, SnmpListen, SnmpCancelMsg

3. PDU Functions:
SnmpCreatePdu, SnmpGetPduData, SnmpSetPduData,
SnmpDuplicatePdu, SnmpFreePdu

4. Varbindlist Functions:
SnmpCreateVbl, SnmpDuplicateVbl, SnmpFreeVbl,
SnmpCountVbl, SnmpGetVb, SnmpSetVb, SnmpDeleteVb

5. Entity/Context Functions:
SnmpStrToEntity, SnmpEntityToStr,
SnmpStrToContext, SnmpContextToStr,
SnmpFreeEntity, SnmpFreeContext,
SnmpSetPort

6. Utility Functions:
SnmpEncodeMsg, SnmpDecodeMsg, SnmpStrToOid,
SnmpOidToStr, SnmpOidCopy, SnmpOidCompare,
SnmpFreeDescriptor, SnmpGetLastError,

The five new functions added for WinSNMP v2.0 are
SnmpGetVendorInfo, SnmpCreateSession, SnmpListen,
SnmpCancelMsg and SnmpSetPort.

Extended Operating Systems Support

WinSNMP uses the concept of a session. Sessions are
used for two purposes:

1. To identify a set of resources – e.g., PDUs,
varbindlists (VBLs), entities, and contexts – for in-
ternal management purposes.

2. To represent a channel for communications between
the SNMP engine (typically implemented in Win-
dows as a dynamic link library) and a particular
“code path” in the associated application which uses
WinSNMP.

In this latter role, WinSNMP sessions were originally
constructed in such a way – via the SnmpOpen() func-
tion – as to effectively limit implementations to the
various Microsoft Windows environments. Since those
environments were the specific targets of the original
effort, that made sense at the time. With growing
exposure of the API and of the various management
applications being built with it, however, many people
saw the need to extend the session construct to enable
implementation in other environments. The result is the
new SnmpCreateSession() function which both provides
enhanced support for Microsoft Windows environments
and permits support for non-Windows environments.

The SnmpOpen() function – which, like all WinSNMP
v1.1a functions, is fully retained in WinSNMP v2.0 – has
the following prototype:

HSNMP_SESSION

SnmpOpen(IN HWND hWnd, IN UINT wMsg);

In calling this function, the application passes a mes-
sage identifier (wMsg) and a window handle (hWnd) to
which the engine sends the message identifier when a
notification event occurs for the session. There are four
kinds of notification events:

1. Receipt of a Response-PDU in reply to an outstand-
ing Request-PDU.

2. Receipt of a Trap-PDU or InformRequest-PDU in
accordance with an SnmpRegister() filter.

3. Receipt of a Request-PDU in accordance with an
SnmpListen() filter.

4. Discard of a pending Request-PDU message due
to expiration of the overall timeout interval, for
messages sent with RetransmitMode enabled.

Upon success, SnmpOpen() returns a non-zero session
identifier. Many of the remaining WinSNMP functions

VOLUME 6, NUMBER 1 MARCH, 1998

The Simple Times 9

take a session identifier as their initial parameter,
enabling both the resource management and channel
communications functions mentioned earlier.

WinSNMP is designed for maximum asynchronicity
of operations. That is, the transmission of an SNMP
request is largely dissociated from the receipt of the cor-
responding response in the engine. This design encour-
ages the deployment of high-throughput, fault-tolerant,
multi-threaded implementations. Clearly, for GUI ap-
plications running in Microsoft Windows environments,
SnmpOpen() provides a natural means of enabling multi-
session asynchronous operations. Typically, WinSNMP
engines have also leveraged the parallel asychronous
capabilities of the Windows Sockets (WinSock) API (now
a standard component of Microsoft’s Win32 platforms) to
further enable such high-performance multi-session ap-
plications on relatively low-cost machine configurations.

A notification method is the engine’s means of sig-
nalling a session when a notification event occurs for
it. The single notification method offered by SnmpOpen()

presented a major roadblock for WinSNMP support on
other operating systems (most notably UNIX). A good
portion of the heavy-duty technical collaboration on the
WinSNMP mailing list in developing v2.0 went into
the definition of the new SnmpCreateSession() function.
The primary purpose of this new function is to add
callback function support as an alternative notification
method. In addition, SnmpCreateSession() is designed
as a superset of SnmpOpen() so that, while the latter
is fully retained in the API, the new function can be
used in all new or modified applications as a single
means to provide either or both notification methods.
The SnmpCreateSession() function has the following
prototype:

HSNMP_SESSION

SnmpCreateSession(IN HWND hWnd,

IN UINT wMsg,

IN SNMPAPI_CALLBACK fCallBack,

IN LPVOID lpClientData);

If the fCallBack parameter is NULL, then the func-
tion is evaluated as though it were simply a call to
SnmpOpen() by using the hWnd and wMsg parameters.
If fCallBack is non-NULL, it is taken as the address
of a function to invoke as the notification method for
this session, and the hWnd, wMsg, and lpClientData are
all values which will be passed, along with several
others, to the fCallBack function for each notification
event. The callback function prototype must match the
SNMPAPI_CALLBACK type:

typedef SNMPAPI_STATUS

(CALLBACK *SNMPAPI_CALLBACK)

(IN HSNMP_SESSION hSession,

IN HWND hWnd,

IN UINT wMsg,

IN WPARAM wParam,

IN LPARAM lParam,

IN LPVOID lpClientData);

SNMPAPI_STATUS is a WinSNMP standard return value
indicating success or failure. The hWnd, wMsg, and
lpClientData parameters contain the values passed by
the application when it called SnmpCreateSession() to
open the session identified by the hSession parameter.
In addition, the engine passes two other values:

1. wParam - Status indicator used to distinguish be-
tween a normal notification, a timeout notification
or other “transport layer” errors as defined in win-
snmp.h.

2. lParam - The RequestID of the corresponding
Request-PDU.

As with the window/message notification method, the
callback function checks the value of wParam and nor-
mally switches on it to either process an incoming SNMP
message using SnmpRecvMsg(), or to perform any neces-
sary PDU clean-up and/or user alerting steps. In either
case, the lParam parameter contains the RequestID
value associated with the corresponding notification
event.

The RequestID value in lParam is most useful for
timeout notification processing (more about this in a
later section), since no further identification of the timed
out message is available from the WinSNMP engine at
this point. For normal “response to request” PDUs, it
can be useful to know what Response-PDU the engine is
signalling, but there is no guarantee that the next call to
SnmpRecvMsg() will return exactly that Response-PDU.
The engine may return any valid available SNMP mes-
sage for the calling session on any given invocation of
SnmpRecvMsg(). Synchronicity between message arrival
notification (message signalling) and message delivery
(in response to acting on that notification) is not man-
dated.

In addition, the session identifier parameter hSession
can be used to further simplify notification event pro-
cessing. This is often accomplished by opening multiple
sessions, whether for groups of agents being managed
(e.g., by subnet, vendor, or type of device) or for directing
traps, informs, and requests (for agent applications) to
sessions opened for those specific purposes.

In general, SnmpCreateSession() has proved to be
very successful in its still brief lifetime. Not only has
it been used to implement “console mode” and “service

VOLUME 6, NUMBER 1 MARCH, 1998

The Simple Times 10

mode” applications on Win32 platforms (while maintain-
ing the backwards-compatible SnmpOpen() “GUI mode”),
it has also enabled ports of the WinSNMP library
to multiple UNIX platforms (commercial implementa-
tions are now available for AIX, HP-UX, and Solaris).
On the downside, it was hoped that the design of
SnmpCreateSession() would enable X-Windows “GUI
mode” applications on UNIX platforms too, but thus far
none has emerged (to the best of this author’s knowl-
edge).

Support for Agent Applications

Originally, the WinSNMP API was qualifed as the “Win-
SNMP/Manager API,” in recognition of the facts that:

� The industry participants felt that the management
applications area had (at the time, at least) greater
need of such attention and that this domain would
prove to be more amenable to standardization than
the agent domain.

� The IETF was haggling, off and on, about whether
or not to standardize extensible agent technology.

No function was included in the WinSNMP repertoire
to enable an agent to bind to a port to listen for in-
coming SNMP request messages. After a fairly short
time in the field, however, it became apparent that a
sizable need existed for agent applications to run over
WinSNMP and, moreover, extending WinSNMP to yield
this capability would require very little work. Several
WinSNMP vendors had already added this capability to
their implementations in generally straight-forward yet
nonetheless non-standard (and slightly different) ways –
this promised to be a source of pain for agent application
developers and consumers alike.

So, WinSNMP v2.0 added the SnmpListen() function
to address this need. Now bear in mind that we are
speaking only about the “SNMP front-end” portion of an
agent application. Neither the so-called “method rou-
tines” nor the “instrumentation back-end” is addressed
by WinSNMP v2.0.

The ease with which this level of support for agent ap-
plications could be added is exemplified by the function
prototype itself:

SNMPAPI_STATUS

SnmpListen(IN HSNMP_ENTITY hEntity

IN SNMPAPI_STATUS lStatus);

WinSNMP uses the concept of an entity as an end-
point of an SNMP transaction. In most cases, this
is simply another term for an agent. In the original
vision, “party-based SNMPv2” (now historic) provided

the model for an entity. In the interim, this has fallen
into disuse. It is anticipated, however, that SNMPv3
will be cause for its resurrection (more on this in a later
section). For now, suffice it to say, that a WinSNMP
entity is created via the SnmpStrToEntity() function and
has the following minimal attributes (and may have
others specific to an implementation):

� Owning session

� SNMP version indicator

� Protocol family indicator

� Network address

� UDP port or IPX socket number

� Timeout interval (policy) value

� Retry count (policy) value

The owning session identifier is passed as a parameter
to SnmpStrToEntity(). The protocol family is deter-
mined from the format of the transport address string
(implementations typically support IP/UDP and IPX),
which is also passed as the second and final parameter to
SnmpStrToEntity(). The UDP port or IPX socket num-
ber assumes an initial default value, as do the timeout
interval and retry count values. These default values
come either from the engine (if the SnmpStrToEntity()

call is made while the application is operating in an
untranslated mode) or from the implementation-specific
“local configuration database” (if the call is made from
the translated mode). The SNMP version supported
by the instantiated entity is also derived from the
TranslateMode value (which may be set by the ap-
plication with the SnmpSetTranslateMode() function).
Subsequently, an entity’s port/socket, timeout interval,
and retry count values can be changed by the applica-
tion using the SnmpSetPort(), SnmpSetTimeout(), and
SnmpSetRetry() functions, respectively.

The lStatus parameter to SnmpListen() may take a
value of SNMPAPI_ON or SNMPAPI_OFF. The former is used
to initialize an agent entity in listening mode on its
currently assigned port; the latter is used to terminate
the agent role and free the port for other uses. Only one
agent entity may listen on a given port at one time. The
agent may, of course, function either as a native or as a
proxy agent and may be either monolithic or extensible.
In either case, SnmpListen() returns appropriate failure
indicators if it finds the requested port already in use.

Once SnmpListen() returns successfully from an
SNMPAPI_ON invocation, the agent session is notified of
received SNMP management requests for it to process
in the same manner that a manager session is notified

VOLUME 6, NUMBER 1 MARCH, 1998

The Simple Times 11

of received responses. The agent application then calls
SnmpRecvMsg() to pull the message off the queue and
then SnmpGetPduData() to gain access to the varbindlist.
After processing the varbindlist it can return the corre-
sponding Response-PDU by simply using the srcEntity

value from SnmpRecvMsg() as the dstEntity value to
SnmpSendMsg() to direct the response to the appropriate
local or remote manager session.
SnmpListen() has already led to the deployment of

several WinSNMP-based agents, both monolithic and
extensible. At least one commercial implementation of
AgentX (RFC 2257) over WinSNMP for Win32 environ-
ments has been announced. In addition, WinSNMP ap-
plications may freely mix agent and manager operations,
enabling “mid-level manager” type applications. One
such application – consisting of both a mid-level man-
ager and a pre-AgentX extensible agent environment,
all running over WinSNMP for Win32 – is already being
used in public information kiosks produced by a major
computer manufacturer.

Support for SNMPv1 Trap-PDU Generation

From its inception, WinSNMP has sought to promote
the use of SNMPv2 (now taken to mean SNMPv2c). As
part of that intention, it was decided at the outset to
deliver all SNMP traps to sessions waiting for them
via SnmpRegister() as SNMPv2 Trap-PDUs. There-
fore, WinSNMP engines have always converted received
SNMPv1 Trap-PDUs to SNMPv2 Trap-PDUs internally
(guided by RFC 1908), prior to delivering them to the
registered manager sessions. Also, inasmuch as Win-
SNMP v1.1a was oriented almost entirely toward man-
ager applications, with no explicit support for agent ap-
plications, no standard function or method was provided
to populate the special data elements of an SNMPv1
Trap-PDU.

Naturally, as with the agent capabilities mentioned in
the preceding section, customers quickly decided that,
given all the SNMP operations that WinSNMP did
support, the engine should also handle the generation
and transmission of SNMPv1 Trap-PDUs. Therefore,
several vendors implemented proprietary extensions for
that purpose. These extensions resulted in application
portability problems and some increased incidence of
resource management errors in both implementations
and applications that used these proprietary functions.

WinSNMP v2.0 decided to tackle the problem by us-
ing the method described in RFC 2089 for generating
SNMPv1 Trap-PDUs when needed. Essentially, the
trap sending application only constructs SNMPv2 Trap-
PDUs. During the SnmpSendMsg() operation, the engine
checks the SNMP version attribute of the dstEntity

parameter. If it is an SNMPv1 entity, then the SNMPv2
Trap-PDU data elements are used to construct a sep-
arate SNMPv1 Trap-PDU message for that particular
target entity.

Note that the submitted SNMPv2 Trap-PDU is not
itself modified; a stand-alone SNMPv1 Trap-PDU mes-
sage is constructed out of it for any SNMPv1 target.
This permits a combination of SNMPv1 and SNMPv2
targets to be included in a trap dispatching loop on
SnmpSendMsg(). All clean-up of the SNMPv1 Trap-PDU
message resources is handled automatically by the en-
gine, with no intervention by the application – which
must, however, clean-up any resources it allocated for
the SNMPv2 Trap-PDU, as usual.

This scheme has proven quite effective in the field
thus far, but does come with two caveats:

1. The standard SNMPv2 Trap-PDU format does not
map all of the data elements of the SNMPv1 Trap-
PDU format. Therefore, some “information” is
lost and some feel that the loss of the SNMPv1
Trap-PDU agent address field is the most critical.
The SNMPv3 Working Group is actively studying
this problem at this time. This is not a WinSNMP
problem; it is a generic SNMP problem.

2. The SNMPv2 Trap-PDU must be constructed in
strict accordance with the relevant SNMPv2 RFCs
(RFC 1905 and RFC 1907). In addition, WinSNMP
mandates the presence of the (quasi-optional)
snmpTrapEnterprise varbind, in addition to the re-
quired sysUpTime and snmpTrapOID and all posi-
tional requirements for these three varbinds must
be met. WinSNMP does not make it hard to properly
construct a valid SNMPv2 Trap-PDU, but it does
not contain any special functions that could make it
easier to get it right. (Luckily, this is a problem that
typically does not recur once a programmer gets it
right one time.)

Required Retransmission/Timeout Behavior

While WinSNMP v1.1a did include entity attributes
(policyTimeoutInterval and policyRetryCount) de-
signed to support a retransmission policy specific to the
entity, it did not require implementations to support
actual execution of that policy. The rationale was that,
in the end, the application must react, in a manner
appropriate to its own design and purpose, to any even-
tual timeout notification that would be returned by the
engine and, therefore, most applications would just go
ahead and handle response timeout monitoring on their
own. It eventually became apparent that this decision
had several flaws:

VOLUME 6, NUMBER 1 MARCH, 1998

The Simple Times 12

� Since implementations could elect to support re-
transmission policy execution, some did and some
did not, thereby obstructing portability of applica-
tions.

� Since the feature was optional, no standard method
had been established for returning timeout notifica-
tions to the applications for those implementations
that did support it.

� As it turned out, the majority of applications devel-
opers wanted to have the implementation undertake
basic retransmission policy execution on the (fairly
safe) bet that this would hide most of the “in the
noise” retries from their application’s mainline exe-
cution stream.

As a result, several implementations opted to pro-
vide retransmission support and several different and
slightly incompatible timeout notification methods were
fielded. This situation presented some difficulties for
applications developers. Work arounds were identified,
but they were not optimal. The group targeted a fix to
this problem as one of the primary goals of WinSNMP
v2.0 and the API now includes a single standard method
of returning timeout notifications.

Essentially, the method works identically for any
session which will send SNMP request messages with
the RetransmitMode set to SNMPAPI_ON. The engine’s
current default value for this setting is returned by
the SnmpStartup() function and may be modified at
any time (and any number of times) by the application
via the SnmpSetRetransmitMode() function. While most
applications work with a single initial value for this
setting (typically SNMPAPI_ON), it is important to note
that it is evaluated by SnmpSendMsg() at the message
level. Any out-bound SNMP request message submit-
ted when RetransmitMode is on will receive automatic
retransmission and timeout processing by the engine,
using the timeout and retry policy values the dstEntity

held when the message was sent. The engine applies
default values for these attributes when an entity is
created. Subsequently, an entity’s settings may be
changed, as response behavior may indicate, with the
SnmpSetTimeout() and SnmpSetRetry() functions.

Any SNMP request submitted when RetransmitMode

is set to SNMPAPI_OFF will not be retransmitted (that is,
its retry value is ignored) and will be silently discarded
(that is, no timeout notification will be posted to the ap-
plication) when its initial timeout expires prior to receipt
of the corresponding Response-PDU. If a corresponding
Response-PDU arrives after that point, it too is silently
discarded by the engine. For SNMP request messages
submitted when RetransmitMode is set to SNMPAPI_ON,

the engine will automatically retransmit the request
after the expiration of the timeout interval until the
retry value has been exhausted. That is, it will make
a total of retry + 1 attempts to elicit a corresponding
Response-PDU from the agent. Note that the retry

value may be zero. If no corresponding Response-PDU
has been received after the final timeout interval has
expired, a timeout notification is returned to the appli-
cation. Whether the session’s notification method is of
the “window/message” or “callback function” type does
not matter – wParam will be SNMPAPI_TL_TIMEOUT and
lParam will be the RequestID of the timed out PDU. The
engine then frees all internal resources associated with
the expired message.

Note that WinSNMP engines may record the actual
timeout and retry values associated with an entity, but
doing so is optional (and does not seem to be widely
supported or needed to date). Applications may re-
trieve all current retransmission settings for an entity,
both policy and actual, via the SnmpGetTimeout() and
SnmpGetRetry() functions.

SNMP Version Support

Work on the original WinSNMP API specification
started during the early years of the “party-based SN-
MPv2” effort. A valiant collective design effort at-
tempted to provide the straightfoward support for SN-
MPv1 management applications that was manifestly
doable, while at the same time incorporating trans-
parent support for the still embryonic “SNMPv2” of
the time. The concept of a TranslateMode setting was
adopted to help realize this objective.

When set to an untranslated mode (either SNMPv1
or SNMPv2), the engine expects “raw” (native) values
as inputs to the entity and context creation functions
– namely, SnmpStrToEntity() and SnmpStrToContext().
When set to translated mode, the engine interprets
the input values as “friendly names” for more complex
structures and consults the implementation-specific “lo-
cal configuration database” (LCD) for complete initial
(default) entity or context attribute information. Be-
yond that point, the curent value of the TranslateMode

setting – which may be changed at any time from its
startup default via the SnmpSetTranslateMode() func-
tion – has no bearing on other WinSNMP operations or
functions (other than the corollary functions that output
the entity or context “name,” SnmpEntityToStr() and
SnmpContextToStr(), respectively).

Having the untranslated modes allows both direct
user input of the raw values (e.g., an IP address in
dotted decimal notation) and/or for an application to
use its own concept of an LCD to perform whatever

VOLUME 6, NUMBER 1 MARCH, 1998

The Simple Times 13

translations may be required. This mode is widely used.
Using “translated” mode allows WinSNMP engine ven-
dors to do a good job of also being WinSNMP application
vendors and permits new or experimental addressing
and/or protocol constructs to be tested fairly easily. At
least one WinSNMP implementation used this mode to
field early support for the “User-based Security” (USEC)
model (RFC 1910). Some of this work may find its way
into the eventual support for SNMPv3 (RFC 2272 and
RFC 2274) in that implementation.

The format of the LCD itself is not specified, so it is
implementation-specific. Furthermore, an inadequate
set of “database functions” exist in WinSNMP to sup-
port a viable standard format. Both deficiencies have
imposed limits on applications portability and may be
addressed in a future version of the API. Such stan-
dardization may actually be a prerequisite to providing
usable support for SNMPv3 as currently defined in RFC
2271 - RFC 2275.

Also, WinSNMP uses the concept of an “SNMP level”
– a value returned by the engine via the SnmpStartup()

function – to indicate the engine’s SNMP version capa-
bilities. Four such (cumulative) levels were originally
envisioned:

� Level 0: All operations up to and including encod-
ing and decoding actual SNMP messages, but no
transport or network layer operations (i.e., no com-
munications with agents). This is useful when the
application might want to use some non-standard
or otherwise unsupported transport layer interface
and yet still use WinSNMP for the ASN.1/BER
operations, for example.

� Level 1: Full support for transactions with SNMPv1
entities.

� Level 2: Full support for transactions with SNMPv2
(now intended only as SNMPv2c) entities.

� Level 3: Support for the “Mid-Level Manager” con-
structs as originally intended by the (now historic)
“party-based SNMPv2” effort.

This level concept has been somewhat modified for
WinSNMP v2.0. Basically, all WinSNMP v2.0 imple-
mentations must be at “Level 2,” nothing lower (but
recall that the levels are cumulative). Also, the original
meaning of “Level 3” has been dropped, and it is antic-
ipated that this setting will be used to indicate “Full
support for SNMPv3” when work on WinSNMP v3.0 is
completed (targeted for the end of this year or early
in 1999). Yes, Virginia, there will be an untranslated
SNMPv3 mode!

“Full support for SNMPv2” means compliance with
all mandatory aspects of RFC 1901 through RFC 1908,
including all of SMIv2 (e.g., Counter64). Note that when
an InformRequest-PDU is received and there is at least
one session (there may be multiple) which has registered
to receive it (via the same SnmpRegister() function used
to register for traps), the engine itself is responsible
for generating the single Response-PDU required and
for transmitting it back to the entity which sent it the
InformRequest-PDU. This happens before the registered
sessions are notified of the InformRequest-PDU and is
totally transparent to them.

Conclusion

The WinSNMP effort is alive and well. Deployment
of engines and applications for Win32 environments is
now wide-spread and will become pervasive with future
releases of Windows NT. A large and growing number
of the major network managment platform and appli-
cation vendors now utilize WinSNMP in their Win32
products. Several UNIX implementations are gaining in
popularity, albeit still constitute only a small minority of
SNMP engines on those platforms. The expected growth
in manageable entities – especially software – that
will be fostered by AgentX implementations will also
further the use of WinSNMP in certain environments.
WinSNMP has proven to be a stable, long-term effort
with a fairly high degree of open industry participation.
If you would like to play a part or just listen in and are
not yet subscribed to the mailing list (which also handles
HP’s SNMP++ and Microsoft’s SNMP software), send an
electronic mail message to listserv@mailbag.intel.com
with subscribe winsnmp in the body.

Questions Answered
David T. Perkins, SNMPinfo and Desktalk Systems

This column will continue the tradition found in The
Simple Times by providing answers to questions about
current topics. For this issue, all of the questions concern
TRAPs.

What are TRAPs?

TRAPs are operations that asynchronously report the
occurrence of an event. The event should be important,
such as a serious error, an important state change,
or a critical threshold being crossed. In the SNMPv1
framework, an event is called a trap. The SNMPv1
protocol uses the TRAP operation to report events. (RFC
1157 defines the protocol operations for SNMPv1.) In
SNNPv2 and SNMPv3 frameworks, an event is called

VOLUME 6, NUMBER 1 MARCH, 1998

The Simple Times 14

a notification. The SNMPv3 protocol contains the TRAP
and INFORM operations to report events. (The SNMPv2
and SNMPv3 protocols use the second version of the
protocol operations, which are defined in RFC 1905.) The
difference between TRAP and INFORM operations is
that TRAPs are not confirmed and INFORMs are. That
is, for a TRAP operation, a single message is sent from
typically an SNMP agent to an SNMP manager. For an
INFORM operation, a message is sent from typically an
SNMP agent to an SNMP manager, and a response is
returned to the sender. If no response is received by
the sender in a configured amount of time, then the
sender retries the INFORM operation until a response
is received or a configured number of retries is reached.
(Note that the SNMPv3 architecture, as specified in RFC
2271, does not use the terms agent and manager. In
it, a notification is sent by a notification originator and
received by a notification receiver.) The MIB modules
SNMP-TARGET-MIB and SNMP-NOTIFICATION-MIB
contained in RFC 2273 define object types that specify
the time-out and retry values for each target (a notifi-
cation receiver), select the set of targets for each type
of event, and specify if a TRAP or INFORM should be
sent. Prior to RFC 2273 there were no general purpose
MIB modules that defined object types to specify event
targets (which are also called trap destinations). Thus,
most device vendors have created proprietary object type
definitions to specify trap destinations. Few vendors
have created mechanisms to control which trap type is
to be sent to each destination.

How are Event Reports Used?

The SNMP model of management is based on smart
managers and agents with limited intelligence. That is,
managers have a global view of the network and, thus,
should be in the position to decide what management in-
formation is needed from the devices that they manage.
Therefore, management applications must periodically
retrieve a small set of management information from
managed devices to track the status of the devices.
When a manager notices that the information indicates
a situation of interest, such as an abnormal increase
in errors on a device, then the manager will retrieve
additional information to determine the situation. Af-
ter processing the information the manager may make
changes to the configuration of the device, or notify a
network operator of the situation and suggest human
intervention, such as replacing a failed device or com-
ponent. This model has a problem in that the status
of devices is only updated each polling interval. The
amount of time between when an event occurs and when
a manager notices it is the event detection latency. The

polling interval that a manager uses is the maximum
length of time that may pass between the time an event
occurs and when the manager detects the event. Agents
use event reports to shorten the event detection latency.
An event can be used by a manager to immediately
retrieve management information from a device instead
of waiting until the next scheduled poll of information
from an agent. This strategy of managing an agent
is called trap directed polling. Instead of using event
reports, a manager could shorten the polling interval.
This results in much higher network traffic for man-
agement, slows down the devices being managed (since
they are spending more time responding to management
requests), and reduces the number of devices that can be
managed by a single management station.

What are the Problems with Event Reports?

The most serious problems with networks are communi-
cation failures. When such a failure occurs, an event
report is least likely to be received by a management
station. And, unfortunately, event reports may cause
even greater problems or lengthen the period of commu-
nication failures. Failures may be caused by physical
failure of network interfaces, devices, or the connecting
wires (cables); misconfigured routing or forwarding ta-
bles; or network congestion (too much network traffic).
When only event reports are used, a manager will never
know of a problem if an event report can not reach the
manager. An unanswered poll will not tell a manager
what problem occurred, but will alert the manager
that there is one or more problems. The manager can
then start a systematic determination of the network
problems.

What Types of Event Reports are Available in
Each SNMP Protocol?

The SNMPv1 protocol has support for the v1 TRAP
operation, which is simply named trap. All the variants
of the SNMPv2 protocol including SNMPv2c, SNMPv2p,
SNMPv2u, and SNMPv2* have support for the v2 TRAP
operation, which is named snmpV2-trap. (See Volume
5, Number 1 of The Simple Times for a description
of the versions of SNMP.) The SNMPv3 protocol has
support for the v2 TRAP and the INFORM operations
for event reports. (Note that the SNMPv2 protocols
use the INFORM operation for manager-to-manager
communication instead of event reporting.)

How are Event Types Defined?

The events types are defined by the TRAP-TYPE con-
struct in MIB modules written in the SMIv1 format.

VOLUME 6, NUMBER 1 MARCH, 1998

The Simple Times 15

The syntax and semantics are specified in RFC 1215.
MIB modules written in the SMIv2 format use the
NOTIFICATION-TYPE construct, which is defined in
RFC 1902. Many people now use the term notification
instead of event report or trap. The TRAP-TYPE and
NOTIFICATION-TYPE constructs are similar. Both
require that a descriptor be assigned to the event type
that is a name for people to refer to an event type.
Also, both allow an optional list of variables to be
specified, whose values will be returned in the event
report message. Both have clauses so that the event
type can be described and a reference given to another
document that contains additional information. The
NOTIFICATION-TYPE construct has a STATUS clause,
not found with the TRAP-TYPE construct that specifies
the status of a defined event type. Finally, both have
clauses that identify an event type in a protocol message.
Here are examples in SMIv1 and SMIv2:

ex34Event TRAP-TYPE

ENTERPRISE exEvents

VARIABLES { exObj1, exObj2 }

DESCRIPTION

"A description goes here."

REFERENCE

"A reference to another document."

::= 34

ex34Event NOTIFICATION-TYPE

OBJECTS { exObj1, exObj2 }

STATUS current

DESCRIPTION

"A description goes here."

REFERENCE

"A reference to another document."

::= { exEvents 0 34 }

What is the Difference Between v1 and v2 TRAPs?

Events reported by the v1 TRAP message are identified
by the value of three fields, which are an ASN.1 object
identifier (OID) value and two nonnegative integers.
Events reported by the v2 TRAP and INFORM messages
are identified by a single ASN.1 OID value. The v1 TRAP
messages have a format different than other SNMPv1
protocol messages. The v2 TRAP and INFORM mes-
sages have a format that is identical to other SNMPv3
protocol messages. In addition to identifying the event,
all three messages contain the time (in relative time
format) that the event occurred and a list of variables
with values that provide information about the event.
The v1 TRAP message also contains the IPv4 address
of the device where the event occurred. This address

is problematic, since the SNMP protocol may use trans-
ports other than UDP over IPv4.

What are Generic and Enterprise Specific Traps?

SNMPv1 has six events numbered zero through five.
These are the SNMPv1 generic traps. They are iden-
tified by the value of the generic-trap field in v1 TRAP
messages. No new generic traps may be defined. All
other events are SNMPv1 specific traps. They are
identified by the OID value of the enterprise field and the
nonnegative integer value of the specific-trap field in v1
TRAP messages. This identification scheme is unusual
and confusing. It is this way for historical reasons.

What are Reverse Mappable Traps?

The major difference between an event defined in SMIv1
and an event defined in SMIv2 is how they are identified.
There is an OID value in SMIv2 for each SMIv1 generic
trap. For the SMIv1 specific traps, there is a mapping al-
gorithm to an OID value for a SMIv2 notification, which
is specified in section 2.2 of RFC 1908. The algorithm
creates an OID value by starting with the OID value
of the enterprise field and adding two sub-identifiers.
The first of the two has a value of zero and second has
the value of the specific-trap field. The resulting OID
value is used to identify a notification in SMIv2. Given
the OID value for an SMIv2 notification, if the next to
last sub-identifier has value zero, then the reverse of the
mapping algorithm can be used to specify the identifi-
cation of an SMIv1 trap. SMIv2 has no requirement
that the OID values identifying notifications have zero
as the next to last sub-identifier. If such OID values are
used to identify notifications, then a mapping to a SMIv1
trap can not performed by a proxy without additional
information.

How is the Community String Used in v1 TRAPs?

There has been much confusion as to how community
strings are used in SNMPv1 TRAP messages. The
SNMPv1 protocol document, RFC 1157, is more con-
fusing than helpful. The true usage and meaning of
community strings in all SNMP messages has always
been confusing. This is because the community string
in an SNMP message is simultaneously used to specify
the target of the operation, specify the context of the
operation, and to specify authentication information.

In SNMPv1 messages, the community string is the
index into a conceptual table on an agent that has the
value of these fields. There has been no standards
track document that defined this conceptual table or
provided a MIB module containing definitions for such

VOLUME 6, NUMBER 1 MARCH, 1998

The Simple Times 16

a table. However, several vendors in their agent im-
plementations have such a table. Note that there is
ongoing work by the SNMPv3 working group to create
standards track documents that define objects for this
conceptual mapping table. A manager must know the
contents of the conceptual table on an agent to know
what community string values can be used in requests
to an agent and how to interpret the community string
value in a TRAP message. When a manager receives a
TRAP message, the community string is an index into
a conceptual table. The table indicates the source of
the TRAP, the context of the TRAP, and authentication
information. Because of the confusion as to how to use
the community string value, all of the capabilities that
it provides have not been fully used. First, there are few
situations where a context is needed. A context is similar
to an additional index for MIB objects, and is used when
a MIB designer did not anticipate that another level
of indexing was needed. For example, the bridge MIB,
RFC 1493, assumes that an SNMP agent manages a
single bridge. However, when a single agent manages
more than one, the value of the context is used to specify
which bridge the objects in an SNMP operation apply. A
context is needed for GET and SET operations as well as
the TRAP operations.

What UDP Port is Used to Send and Receive Event
Reports?

UDP port 162 is the recommended port specified in the
transport mapping document (RFC 1906) for notification
receivers to listen for v2 TRAP and NOTIFICATION
messages. A notification generator may use any avail-
able UDP port as the source, since the source port has
no significance. Thus, a dynamic port, not 162, is used
as the source. Likewise, UDP port 162 is specified by the
SNMPv1 protocol document (RFC 1157) for managers to
receive v1 TRAP messages. An SNMPv1 agent may use
any available UDP port as the source.

What is this Lost Address in Event Reports?

One of the differences between v1 and v2 TRAP mes-
sages is that the v2 TRAP messages do not contain
the source network address of the system where the
event occurred. (And we noted that the address in the
v1 TRAPs is problematic, since only an IPv4 address
may be specified and the SNMPv1 protocol may run
over other transports.) Not having the address is not
a problem when a proxy is not used. The event receiver
can obtain the source network address from the message
delivery service, which will be the network address of the
system where the event occurred. However, in proxy or

third party event reporting situations, the network ad-
dress that the event receiver obtains from the message
delivery service will be for the proxy or third party event
reporter and not the system where the event occurred.
Since there is no standard MIB to define the objects in
the conceptual table that a proxy or third party event
reporter uses to know what community string value to
use and which managers to forward an event report,
an event receiver has no place to look to determine the
original system where the event occurred! The problem
exists when the event originator sends a v1 TRAP and
the transport is not UDP over IPv4, when the proxy uses
a v2 TRAP, or when the proxy does not use the UDP over
IPv4 transport.

Note that the original community string value may
also be lost when using a proxy. A solution that has been
proposed, but is not yet finalized is for the first proxy to
add the lost information as varBinds to the varBind list
of the forwarded event report. The information would
consist of three new object types, which are the value
of the original community string, the transport domain
of the event originator, and the transport address of the
event originator.

What are Common Implementation Problems?

Some of the common implementation problems are:

� Misunderstanding how to identify v1 TRAPs:
The names of the three fields used to identify v1
TRAPs has confused many people. Even though the
field is called enterprise, this does not imply that the
trap is contained in a vendor specific MIB module.
The value for the enterprise field is just an OID
value.

� Missing instance identifier on returned variables:
The TRAP and INFORM messages contain a
varBind list like that found on all other SNMP
messages. A varBind is a pairing of a variable
and a value. A variable is the identification of an
instance of management information. The mistake
that some vendors have made is to only specify the
identification of an object type. That is, the instance
information is not specified.

� Poor event definition design:
The varBind list contained in an event report mes-
sage is a list of variables and associated values that
describe the event. There is no need to design an
event so that any of the variables that are returned
are indices of tables. A highly visible example is the
linkUp event, which has object ifIndex as a required
variable. Requiring ifIndex is poor event design.

VOLUME 6, NUMBER 1 MARCH, 1998

The Simple Times 17

Instead, the variable should have been ifOperStatus
and possibly ifType. The interface is determined by
the instance of the ifOperStatus variable.

� Problems with extra varBinds:
An agent (or proxy) may add additional varBinds
to an event report message. The event definition
only specifies the required varBinds. Some manage-
ment applications crash and burn when additional
varBinds are present in an event report. Don’t let
this happen to you.

Has Everything About Events and Event Report-
ing Been Covered?

This column has covered much material in a brief space.
However, only the most important and frequently asked
questions about traps have been covered. The most
important issue is that the infrastructure to use traps
in SNMPv1 was not fully developed in the original
SNMPv1 framework. However, in developing SNMPv3,
much work was put into developing a complete infras-
tructure, and that infrastructure with a little more work
(which is in progress) can also be used in SNMPv1.
So you can see, work continues in the IETF SNMPv3
working group for supporting the SNMPv1 framework.
The approach taken is to keep the SNMPv1 protocol
unchanged and to enhance the surrounding SNMPv1
infrastructure using technology created during develop-
ment of the SNMPv3 framework. The result is a bet-
ter SNMPv1 infrastructure for vendors and users that
want or need to continue using the SNMPv1 approach,
with an easy transition to the SNMPv3 protocol, which
provides security and additional protocol operation func-
tionality.

Editor’s Comment
Jürgen Schönwälder, TU Braunschweig

Aiko Pras, University of Twente

Welcome to the first issue of The Simple Times in 1998.
There is a lot of enthusiasm back in the SNMP world
and 1998 might become the “Year of SNMPv3”. The
SNMPv3 specifications have been published as RFCs
in January and we already have several independent
implementations of SNMPv3. The new year also brings
some changes to The Simple Times newsletter and the
leadership of the IETF “Operations and Management
Area”. More on all this below.

SNMPv3 Interoperability Demonstrations

The SNMPv3 specifications were published as Proposed
Standards in January 1998 (RFC 2271 - RFC 2275).
Three months after publication of the RFCs, an ad-hoc
interoperability test with four independent SNMPv3 im-
plementations was held at the 41st IETF meeting. This
test is quite encouraging as the participants did not de-
tect any serious interoperability problems. And the next
big event is just around the corner: Network+Interop
in Las Vegas will have an SNMPv3 Hot Spot where
several vendors will demonstrate secure SNMPv3 in-
teroperabilty including authentication, privacy and re-
mote administration. The list of participating vendors
includes Advent Network Management, Bay Networks,
BMC Software, Cisco Systems, Hewlett-Packard, IBM,
Liebert Corporation, SNMP Research, Tivoli and the
University of Quebec in Montreal. More implementa-
tions by other vendors and universities are announced
and will show up over the year.

If you want to read the latest news about SNMPv3,
visit the SNMPv3 Web page at http://www.ibr.cs.tu-
bs.de/projects/snmpv3/. This Web page is actively main-
tained and provides links to the SNMPv3 documents,
short descriptions of SNMPv3 implementations, mate-
rial from presentations about SNMPv3 and interoper-
ability reports.

Editorial Board for The Simple Times

The editors of The Simple Times formed an editorial
board which will help to ensure that this newsletter
provides you with useful and technically accurate in-
formation. The motivation was simple: Making more
people feel responsible for The Simple Times makes
the job a bit easier for the editors. The members of
the editorial board are listed on the last page of this
newsletter. We would like to thank those volunteers for
their support of The Simple Times newsletter and the
interesting discussions we already had about the articles
in this issue.

This issue also continues the tradition of The Simple
Times to provide answers to frequently asked questions.
In this issue, David T. Perkins addresses several ques-
tions concerning SNMP Traps in his featured column
called “Questions Answered”.

We also decided to make The Simple Times, including
all the previews issues, available in Adobe’s Portable
Document Format (PDF). We provided a PDF version
of the last issue on The Simple Times Web server and
we got approximately the same number of hits for the
PostScript and the PDF version. So we decided that
providing PDF in addition to PostScript and HTML is
worth the effort.

VOLUME 6, NUMBER 1 MARCH, 1998

The Simple Times 18

Nomination of IETF Area Directors

Finally, we would like to announce that the “Operations
and Management Area” of the IETF, which hosts all the
core SNMP technology working groups such as SNMPv3,
AgentX or Distributed Management (DISMAN), got two
new Area Directors. Harald Alvestrand (Maxware) and
Bert Wijnen (IBM Research) were selected by the nom-
inating committee to take over the positions previously
held by Mike O’Dell (UUNET) and John Curran (BBN).
Harald Alvestrand has previously served as one of the
Area Directors in the “Applications Area”. Bert Wijnen
is well known to this community as one of the driving
forces behind SNMPv3 and the DPI protocol, which has
had major influence on the AgentX protocol.

We like to wish the Area Directors good luck for their
new position and that they find a good and pragmatic
way to move Internet management technology forward,
for the benefits of the whole community.

Standards Summary

Please consult the latest version of Internet Official
Protocol Standards. As of this writing, the latest version
is RFC 2200.

SNMPv1 Framework

Full Standards:

� RFC 1155 - Structure of Management Information
(SMI);

� RFC 1157 - Simple Network Management Protocol
(SNMP); and,

� RFC 1212 - Concise MIB definitions.

Proposed Standards:

� RFC 1418 - SNMP over OSI;

� RFC 1419 - SNMP over AppleTalk; and,

� RFC 1420 - SNMP over IPX.

Informational:

� RFC 1215 - A convention for defining traps for use
with the SNMP.

SNMPv2 Framework

Draft Standards:

� RFC 1902 - SMI for SNMPv2;

� RFC 1903 - Textual Conventions for SNMPv2;

� RFC 1904 - Conformance Statements for SNMPv2;

� RFC 1905 - Protocol Operations for SNMPv2;

� RFC 1906 - Transport Mappings for SNMPv2;

� RFC 1907 - MIB for SNMPv2; and,

� RFC 1908 - Coexistence between SNMPv1 and SN-
MPv2.

Experimental:

� RFC 1901 - Introduction to Community-based
SNMPv2;

� RFC 1909 - An Administrative Infrastructure for
SNMPv2; and,

� RFC 1910 - User-based Security Model for SNMPv2.

SNMPv3 Framework

Proposed Standards:

� RFC 2271 - Architecture for Describing SNMP Man-
agement Frameworks;

� RFC 2272 - Message Processing and Dispatching;

� RFC 2273 - SNMPv3 Applications;

� RFC 2274 - User-based Security Model (USM); and,

� RFC 2275 - View-based Access Control Model
(VACM).

Agent Extensibility

Proposed Standards:

� RFC 2257 - AgentX Protocol Version 1.

MIB Modules

Full Standards:

� RFC 1213 - Management Information Base (MIB-
II); and,

� RFC 1643 - Ether-Like Interface Type (SMIv1).

Draft Standards:

� RFC 1493 - Bridge MIB;

� RFC 1559 - DECnet phase IV MIB;

� RFC 1657 - BGP version 4 MIB;

VOLUME 6, NUMBER 1 MARCH, 1998

The Simple Times 19

� RFC 1658 - Character Device MIB;

� RFC 1659 - RS-232 Interface Type MIB;

� RFC 1660 - Parallel Printer Interface Type MIB;

� RFC 1694 - SMDS Interface Protocol (SIP) Interface
Type MIB;

� RFC 1724 - RIP version 2 MIB;

� RFC 1748 - IEEE 802.5 Token Ring Interface Type
MIB;

� RFC 1757 - Remote Network Monitoring MIB;

� RFC 1850 - OSPF version 2 MIB; and,

� RFC 2115 - Frame Relay DTE Interface Type MIB.

Proposed Standards:

� RFC 1285 - FDDI Interface Type (SMT 6.2) MIB;

� RFC 1381 - X.25 LAPB MIB;

� RFC 1382 - X.25 PLP MIB;

� RFC 1406 - DS1/E1 Interface Type MIB;

� RFC 1407 - DS3/E3 Interface Type MIB;

� RFC 1414 - Identification MIB;

� RFC 1461 - Multiprotocol Interconnect over X.25
MIB;

� RFC 1471 - PPP Link Control Protocol (LCP) MIB;

� RFC 1472 - PPP Security Protocols MIB;

� RFC 1473 - PPP IP Network Control Protocol MIB;

� RFC 1474 - PPP Bridge Network Control Protocol
MIB;

� RFC 1512 - FDDI Interface Type (SMT 7.3) MIB;

� RFC 1513 - Token Ring Extensions to RMON MIB;

� RFC 1514 - Host Resources MIB;

� RFC 1525 - Source Routing Bridge MIB;

� RFC 1567 - X.500 Directory Monitoring MIB;

� RFC 1573 - Evolution of the Interfaces Group of
MIB-II;

� RFC 1595 - SONET/SDH Interface Type MIB;

� RFC 1604 - Frame Relay Service MIB;

� RFC 1611 - DNS Server MIB;

� RFC 1612 - DNS Resolver MIB;

� RFC 1628 - Uninterruptible Power Supply MIB;

� RFC 1650 - Ether-Like Interface Type (SMIv2);

� RFC 1666 - SNA NAU MIB;

� RFC 1695 - ATM MIB;

� RFC 1696 - Modem MIB;

� RFC 1697 - Relational Database Management Sys-
tem MIB;

� RFC 1742 - AppleTalk MIB;

� RFC 1747 - SNA DLC MIB;

� RFC 1749 - 802.5 Station Source Routing MIB;

� RFC 1759 - Printer MIB;

� RFC 2006 - Mobile IP MIB;

� RFC 2011 - SNMPv2 IP MIB;

� RFC 2012 - SNMPv2 TCP MIB;

� RFC 2013 - SNMPv2 UDP MIB;

� RFC 2020 - IEEE 802.12 Interfaces MIB;

� RFC 2021 - RMON-2 MIB;

� RFC 2024 - Data Link Switching MIB;

� RFC 2037 - Entity MIB;

� RFC 2051 - APPC MIB;

� RFC 2074 - RMON Protocol Identifier;

� RFC 2096 - IP Forwarding Table MIB;

� RFC 2108 - IEEE 802.3 Repeater MIB;

� RFC 2127 - ISDN MIB;

� RFC 2128 - Dial Control MIB;

� RFC 2155 - APPN MIB;

� RFC 2206 - Resource Reservation Protocol MIB;

� RFC 2213 - Integrated Services MIB;

� RFC 2214 - Integrated Services Guaranteed Service
Extensions MIB;

� RFC 2232 - DLUR MIB;

VOLUME 6, NUMBER 1 MARCH, 1998

The Simple Times 20

� RFC 2233 - Interfaces Group MIB;

� RFC 2238 - High Performance Routing MIB;

� RFC 2239 - IEEE 802.3 Medium Attachment Unit
(MAU) MIB;

� RFC 2248 - Network Services Monitoring MIB;

� RFC 2249 - Mail Monitoring MIB;

� RFC 2266 - IEEE 802.12 Repeater MIB,

� RFC 2287 - System-Level Managed Objects for Ap-
plications; and,

� RFC 2320 - Classical IP and ARP over ATM MIB.

Related Documents

Informational:

� RFC 1270 - SNMP communication services;

� RFC 1321 - MD5 message-digest algorithm;

� RFC 1470 - A network management tool catalog;

� RFC 2039 - Applicablity of Standard MIBs to WWW
Server Management; and,

� RFC 2089 - Mapping SNMPv2 onto SNMPv1 within
a bi-lingual SNMP agent.

Experimental:

� RFC 1187 - Bulk table retrieval with the SNMP;

� RFC 1224 - Techniques for managing asyn-
chronously generated alerts;

� RFC 1238 - CLNS MIB; and,

� RFC 1592 - SNMP Distributed Program Interface
(SNMP-DPI);

� RFC 1792 - TCP/IPX Connection MIB Specification;
and,

� RFC 2064 - Traffic Flow Measurement: Meter MIB.

Calendar and Announcements

IETF Meetings:

� 41th Meeting of the IETF
March 30-April 3, 1998, Los Angeles, CA, USA

� 42th Meeting of the IETF
August 23-28, 1998, Chicago, IL, USA

� 43th Meeting of the IETF
December 7-11, 1998, Orlando, FL, USA

Conferences and Workshops:

� IEEE Workshop on Systems Management ’98
April 22-24, 1998, Newport, Rhode Island, USA

� Enterprise Management Summit ’98
August 3-7, 1998, Santa Clara, CA, USA

� Distributed Systems Operations & Management ’98
October 26-28, 1998, Delaware, USA

� Integrated Network Management ’99
May 10-14, 1999, Boston, MA, USA

Exhibitions and Trade Shows:

� NetWorld + Interop Singapore
March 30-April 3, 1998, Singapore

� NetWorld + Interop Las Vegas
May 4-8, 1998, Las Vegas, USA

� NetWorld + Interop Tokio
June 1-5, 1998, Tokio, Japan

� NetWorld + Interop London
October 13-15, 1998, London, UK

� NetWorld + Interop Atlanta
October 19-23, 1998, Atlanta, USA

� NetWorld + Interop Sao Paulo
November 3-5, 1998, Sao Paulo, Brazil

� NetWorld + Interop Paris
November 5-7, 1998, Paris, France

� NetWorld + Interop Sydney
November 24-28, 1998, Sydney, Australia

VOLUME 6, NUMBER 1 MARCH, 1998

The Simple Times 21

Publication Information

Editors
Jürgen Schönwälder TU Braunschweig

Aiko Pras University Twente
Editorial Board

David Harrington Cabletron Systems Inc.
Keith McCloghrie Cisco Systems Inc.

Bob Natale ACE*COMM
David Perkins SNMPinfo

Randy Presuhn BMC Software Inc.
Bob Stewart Cisco Systems Inc.

Steve Waldbusser International Network Service
Bert Wijnen IBM T.J. Watson Research

Contact Information
E-mail st-editorial@simple-times.org

ISSN 1060–6068

Submissions

The Simple Times solicits high-quality articles of tech-
nology and comment. Technical articles are refereed to
ensure that the content is marketing-free. By definition,
commentaries reflect opinion and, as such, are reviewed
only to the extent required to ensure commonly-accepted
publication norms.

The Simple Times also solicits terse announcements
of products and services, publications, and events. These
contributions are reviewed only to the extent required to
ensure commonly-accepted publication norms.

Submissions are accepted only via electronic mail,
and must be formatted in HTML version 1.0. Each
submission must include the author’s full name, title, af-
filiation, postal and electronic mail addresses, telephone,
and fax numbers. Note that by initiating this process,
the submitting party agrees to place the contribution
into the public domain.

Subscriptions

The Simple Times is available in HTML, PDF and
PostScript. New issues are announced via an electronic
mailing list. Send electronic mail to

st-request@simple-times.org

with

subscribe simple-times

in the body if you want to subscribe to this list. Back
issues are available via The Simple Times Web server:

http://www.simple-times.org/

VOLUME 6, NUMBER 1 MARCH, 1998

