
The Simple Times
TM

THE QUARTERLY NEWSLETTER OF SNMP TECHNOLOGY, COMMENT, AND EVENTS
VOLUME 5, NUMBER 1 DECEMBER, 1997

The Simple Times is an openly-available publication
devoted to the promotion of the Simple Network Man-
agement Protocol. In each issue, The Simple Times
presents technical articles and featured columns, along
with a standards summary and a list of Internet re-
sources. In addition, some issues contain summaries of
recent publications and upcoming events.

In this Issue:

SNMP Version 3
SNMPv3 Working Group - A View From the Chair 1
The Evolution of Architectural Concepts in the

SNMPv3 Working Group 2
Security Features of SNMPv3 8
SNMP Versions 13

Featured Columns
University Comment 14

Miscellany
Standards Summary 15
Internet Resources 17
Calendar and Announcements 17

Publication Information 18

The Simple Times is openly-available. You are free
to copy, distribute, or cite its contents; however, any
use must credit both the contributor and The Simple
Times. (Note that any trademarks appearing herein are
the property of their respective owners.) Further, this
publication is distributed on an “as is” basis, without
warranty. Neither the publisher nor any contributor
shall have any liability to any person or entity with
respect to any liability, loss, or damage caused or alleged
to be caused, directly or indirectly, by the information
contained in The Simple Times.

The Simple Times is available as an online journal in
HTML and PostScript. New issues are announced via an
electronic mailing list. For information on subscriptions,
see page 18.

SNMPv3 Working Group - A View
From the Chair

Russ Mundy, Trusted Information Systems

Thanks to lots of hard work by a number of people, the
core set of specifications for SNMPv3 has successfully
completed the IETF Last-Call process. This will result
in the specifications being published as RFCs with the
status of Proposed Standards.

Before giving more details on how we reached this
point and where I see us going from here, I want to
express my special thanks to the following individuals
that made up the specification editor teams. Their
commitment and actually doing the hard work of writing
down the Working Group consensus made our core set of
specifications possible.

� For the Architecture for Describing SNMP Manage-
ment Frameworks specification;

– David Harrington, Cabletron Systems Inc.

– Randy Presuhn, BMC Software Inc.

– Bert Wijnen, IBM T. J. Watson Research

� For the SNMPv3 Applications specification;

– David Levi, SNMP Research Inc.

– Paul Meyer, Secure Computing Corporation

– Bob Stewart, Cisco Systems Inc.

� For the Message Processing and Dispatching speci-
fication;

– Jeffrey Case, SNMP Research Inc.

– David Harrington, Cabletron Systems Inc.

– Randy Presuhn, BMC Software Inc.

– Bert Wijnen, IBM T. J. Watson Research

� For the View-based Access Control Model specifica-
tion;

– Bert Wijnen, IBM T. J. Watson Research

– Randy Presuhn, BMC Software Inc.

– Keith McCloghrie, Cisco Systems Inc.

The Simple Times 2

� For the User-based Security Model specification;

– Uri Blumenthal, IBM T. J. Watson Research

– Bert Wijnen, IBM T. J. Watson Research

Additionally, I’d like to thank Mike O’Dell as the re-
sponsible Internet Engineering Steering Group (IESG)
Area Director who has provided significant motivation
and support. It is clear to me that the Working Group
would have not been able to make such a substantial
amount of forward progress without Mike’s leadership.

This seems like a reasonable time to give my views
about where we are. A few words on the Internet
Standards Process seem in order since the SNMPv3
core specifications are about to be published as Proposed
Standards.

The Internet Standards Process is described in RFC
2026. I encourage everyone to read this RFC to get a
broader understanding of the various types and matu-
rity designations for RFCs. Additional information on
the Process as well as information on the current status
of RFCs is contained in the Internet Official Protocol
Standards (STD 1) currently published as RFC 2200.

The designation of the core specifications from the
Working Group as Proposed Standards indicates that
they have entered on to the “Internet Standards Track”.
The objective of specifications on this “Track” is to
become full Internet Standards but there are several
steps along the way. As described in RFC 2026, the
subsequent maturity levels on the “Internet Standards
Track” are Draft Standard and Internet Standard. The
Proposed Standard status of the specifications indicates
a number of things, for instance:

� The specifications should be expected to have some
changes before advancing to more mature phases of
the Standards Process.

� Though implementation and operational experience
are not required for a Proposed Standard status,
independent implementation and interoperability
are required to advance to the next maturity level
(Draft Standard).

� Normally, specifications will remain at the Proposed
Standard level for at least six months. If all the
defined requirements for Draft Standard are met,
they may be advanced at that point. However, it is
not uncommon for specifications to “stay in grade”
for longer than the required six months. Depending
on the reasons for “staying in grade”, new RFC(s)
may or may not be published.

I believe that the Working Group needs to develop a
sufficient set of specifications to provide the basis for

standardized, secure network management. However,
we should not “re-invent the wheel”. This has been
the general guidance since the formation of the SNMP
Advisory Team subsequent to the 36th IETF in Montreal
(June of ’96). One of the results of this guidance has been
the decision to make use of the current set of network
management RFCs already on the “Standards Track”,
(RFCs 1902-1908). Using these specifications should
substantially shorten the time needed to provide the
sufficient set of specifications.

Where do I see the Working Group going from here?
Identifying SNMPv3 implementations and promoting
interoperability tests must be done before the specifica-
tions can be advanced to Draft Standard. An important
part of this activity will be determining more specifically
what is meant by SNMPv3 interoperability. This will
likely involve developing Applicability Statement(s) for
the specifications. Additionally, the Working Group has
indicated support for providing a simple, understand-
able overview of SNMPv3 and more documentation for
the transition from and the coexistance with the earlier
versions of SNMP. It is also likely that some changes
will be required to RFCs 1902-1908 though these are
expected to be fairly small.

The Working Group met at the 40th IETF in Wash-
ington, D.C. in December ’97. Besides celebrating the
advancement of the core specifications to Proposed Stan-
dard, the Working Group heard implementation reports,
discussed interoperability testing in the early summer,
and gathered suggestions for future work and an update
of the charter.

The Evolution of Architectural
Concepts in the SNMPv3 Working
Group

David Harrington, Cabletron

This article will review the evolution of some concepts
of “An Architecture for Describing SNMP Management
Frameworks”. The concepts derive from earlier technical
proposals, and in response to policy and technical re-
quirements identified during the process of developing a
secure SNMP, evolved into an architecture for describing
SNMP frameworks.

The article will quickly review the efforts from which
the concepts derive, the constraints and technical goals
for SNMPv3, and then discuss the major architectural
concepts and how they evolved into their current form.

It is expected that the reader will be acquainted with
SNMPv1 concepts, and have read the document “An
Architecture for Describing SNMP Management Frame-

VOLUME 5, NUMBER 1 DECEMBER, 1997

The Simple Times 3

works”. A knowledge of the SNMPv2 effort, while not
required, will aid understanding.

Historical Background

In 1992-1993, the SNMPv2 Working Group developed a
security model based on parties to an SNMP transaction.
Known as SNMPv2p, this design was moved to historic
status when the SNMPv2 Working Group decided that
a proposed user-based security model was much simpler,
and was more likely to be understood and deployed.

In December 1995, the SNMPv2 Working Group was
deactivated, and independent coalitions were formed
to study and experiment with alternative security and
administrative framework designs. The two most promi-
nent approaches, SNMPv2u and SNMPv2*, both em-
ployed a user-based security model as a simpler alterna-
tive to the party-based model. They had many points in
common in the design of the administrative framework,
but the two approaches had philosophical differences.

SNMPv2u supported early standardization of the se-
curity features and a minimal specification, and deferred
standardization of features for managing large networks
to encourage rapid deployment of simple agents.

SNMPv2* supported concurrent standardization of
security and scalability features to ensure that the
security design adequately addressed issues of proxy,
trap destinations, discovery, and remote configuration of
security, to enable effective management of medium and
large networks.

In August 1996, the Security and Administrative
Framework Evolution Advisory Team was formed to
recommend a single approach that would resolve the
differences between SNMPv2u and SNMPv2*. At the
San Jose IETF meeting (December 1996), the team
published its recommendation.

In March 1997, the SNMPv3 Working group was
chartered to continue the work of the SNMPv2 Working
Group to define a standard for SNMP security and
administration.

In this article, an unqualified reference to “the Work-
ing Group” refers to the SNMPv3 Working Group.

Working Group Objectives

The Objectives of the SNMPv3 Working Group reflect
many sources. Some constraints were stated by the Area
Directors or the Chair or were the result of community
needs; some design requirements were formalized in the
charter, or inherited from the SNMPv2 Working Group;
additional design objectives were developed by consen-
sus of the active participants as the work progressed.

Working Group Constraints
The Area Directors have stressed the need for the

Working Group to succeed. The Internet community
needs a secure protocol for network management to
make it possible to not only monitor networks, but to
manage them.

The Working Group must have realistic expectations;
the documents and the design do not need to be perfect.
The documents must be done quickly, and the stan-
dard must be useful, functional and deployable, without
constraining implementation decisions. It should be
reasonably possible to move portions of the architecture
forward in the standards track, even if consensus has
not been reached on all pieces, and to correct problems
later without destabilizing the whole proposal.

The focus must be on specifying a single standard ap-
proach in a timely manner. The work will start with the
recommendation of the advisory team. The recommen-
dation is based on reusing concepts, technical elements
and documentation from SNMPv2u and SNMPv2*. The
focus must be on completing the existing proposals, not
on developing new proposals. RFCs 1902-1908, the
SNMPv2 Draft Standard, should not be changed if that
can be avoided. An initial set of documents should be
ready for Working Group “Last Call” by Munich (August
1997). Work on additional output should be deferred
until after that date.

Working Group Design Requirements
To be successful, the Working Group must produce a set
of documents that will provide a standard for the next
generation of core SNMP functions, and the proposed
design must meet these requirements.

SNMP must be secure in a way that is useful for
the people operating networks, especially support for
secure SETs, which is the most important deficiency in
SNMPv1.

The wide range of operational environments with
differing management demands that comprise the In-
ternet community must be accommodated. It must be
relatively inexpensive to deploy a minimal conforming
implementation, but also possible to support additional
features useful for managing large networks.

SNMP should be able to be extended as new mech-
anisms or protocols become available or unanticipated
aspects of network operation and management arise.

The documents should be clear and unambiguous.
It should be easy to setup and maintain the security

and administrative configuration.
SNMP should be kept as simple as reasonably possi-

ble.

VOLUME 5, NUMBER 1 DECEMBER, 1997

The Simple Times 4

Working Group Design Objectives
A number of design decisions were made by the Working
Group to keep the work focused, and some functional
goals were acknowledged as desirable, but not required.

The Working Group should use as much as practical
of the concepts, technical elements and documentation
from the SNMPv2u and SNMPv2* activities, since im-
plementation experience has already been gained for
features of these designs.

It is highly desirable that the architecture be able to
ease the transition to SNMPv3 from earlier versions, in-
cluding SNMPv1, SNMPv2p, SNMPv2c, SNMPv2u, and
SNMPv2*. It should also be flexible enough to support a
wide range of possibilities for future frameworks.

Since new technologies may emerge, or existing tech-
nologies may prove inadequate, the architecture should
make it possible to incrementally upgrade portions of
SNMP, without disrupting an entire SNMP framework.
To facilitate the development, testing, and deployment
of alternative solutions to supplement the industry stan-
dards, the architecture should permit the integration of
enterprise-specific modules.

Since there are many more agents than managers in
a typical network environment, any complexity should
be incurred in the manager rather than the agent.
Where the overhead to support features needed for large
networks must be present in all entities, even those
that do not support the feature, the overhead should be
minimized as much as feasible.

A standard MIB for specifying trap destinations
should be part of the output of the Working Group, since
this is needed by a number of SNMP-related Working
Groups.

The Architectural Concepts

Many of the concepts have a long history in the secure
SNMPv2 efforts, and were debated by the SNMPv2
Working Group. The concepts discussed in this article,
however, will start with the recommendation of the
advisory team, which included the concepts inherited
from SNMPv2. This article will review the efforts of
the advisory team to identify components of the multiple
proposed SNMPv2 architectures which could be merged
into one architecture. It will follow the evolution as
concepts of SNMPv2/SNMPv3 coalesced into an archi-
tecture.

Modularity and Controlling Side-Effects
The advisory team studied the nature of the differences
between the SNMPv2u approach and the SNMPv2*
approach and, to a lesser degree, the other approaches
which had been suggested for SNMPv2. They also stud-
ied implementation reports and their own implementa-

tion experiences with SNMPv1, SNMPv2p, SNMPv2u,
SNMPv2*, and SNMPv2c to understand what issues
made implementation difficult.

One of the major problems noted in the discussions
regarding converging the SNMPv2u approach and the
SNMPv2* was side-effects. There were many instances
of an item important to one “camp”, on which the second
camp was willing to compromise, until it was studied
further, and it was found that the compromise caused
unwanted side-effects to something important to the
second camp. This happened frequently, and made it
difficult to find reasonable compromise solutions.

It also became obvious that the proposals could not
simply be merged by taking pieces of text from A, adding
them to pieces of text from B, and publishing a set
of merged documents. Even when the advisory team
attempted to resolve conflicts by selecting one approach
over the other, the side-effects that occurred caused
those simple decisions to be revisited again and again.

Software engineering techniques, namely modularity,
encapsulation, tight cohesion, and loose coupling, can be
used to help resolve the side-effect problem. Starting
with those elements that were common to SNMPv2u and
SNMPv2*, such as authentication, encryption, timeli-
ness checking, and view-based access control, the team
identified those parts of the designs which were not gen-
erally contentious. Then the team defined interfaces to
hide the internal processing and data of those modules,
to protect them from side-effects of changes external to
the module.

This was not a very difficult task for the areas that
were not highly contentious, since SNMPv2u and SN-
MPv2* separated user-based security from the admin-
istrative model to a large degree, replaceable compo-
nents of user-based security were already modular, some
implementors had added view-based access control to
SNMPv1, and the use of existing components made
SNMPv2c relatively simple to implement.

Consistent Terminology
It was somewhat more difficult to isolate functional-
ity when segments of the SNMP community disagreed
about the semantics of existing terms. It was sometimes
possible to defer the resolution of specific issues by
limiting the usage of a term to the internals of a module.
Some data elements were needed by more than one
module, but the actual meaning of the element changed
slightly depending on which module used it. In some
instances, the team could resolve the problem by calling
the same item by different names in different modules,
and have one common name for use in the interface
between modules. This clarification of the terms helped
to make debate over the issues easier.

The greatest problem was the MIB, where objects

VOLUME 5, NUMBER 1 DECEMBER, 1997

The Simple Times 5

that were related to separate areas of processing were
combined into one large MIB module, and objects were
sometimes used in different ways by different elements
of procedure, rather than reflecting the separate na-
ture of the various processing modules that operated
on the objects. By defining separate MIB modules
for different processing areas, managed objects could
be limited to one processing module, and resolution of
issues regarding those objects could be deferred until
discussion of that module was on the table. When
managed objects were used by multiple processing areas,
duplicate objects could be defined, and the variations in
semantics caused by different usage of the objects could
be identified. It was always possible that the duplicated
objects could be merged later.

Separate Document Advancement
Many of the side-effects that had plagued the SNMPv2
efforts revolved around features that were considered
important for network management, but not necessarily
for device management. These features include proxy,
informs, and remote configuration of the security and
administration MIB objects. These are important issues
when managing large networks, but were considered un-
necessary overhead for a minimal conforming implemen-
tation. If the MIB objects and the processing for these
functional areas could be isolated from those functional
areas that were important for all SNMPv2 entities, it
might be possible to advance some documents without
waiting to resolve all the problems. This had been done
for RFCs 1902-1908, and RFC 1901 (SNMPv2c) and
1909-1910 (SNMPv2u) had been published separately as
well.

More importantly, the debate over proxy led to agree-
ments that if an adequate interface could be identified
and defined, then proxy could be developed later as a
separate module.

Based on the precedent of RFCs 1902-1908 and the
proposed deferral of proxy, the advisory team recom-
mended a modular SNMP architecture, with fixed in-
terfaces, and documents that could be advanced indi-
vidually. This approach would use modularity, encap-
sulation, tight cohesion, and loose coupling to minimize
the side-effects, and make independent advancement of
SNMP modules possible.

All very pretty, but the devil is in the details. The
SNMPv3 Working Group was chartered and the real
work began.

The Architecture, Interfaces, and Implementa-
tions
The advisory team specified detailed APIs, defined or
implied implementation constraints and got the split
between modules wrong. They had not followed and re-

sponded to external developments while they worked in
relative isolation. They did not anticipate several evolv-
ing demands on the architecture, such as non-SNMP
access to authentication, encryption, and access control
services; support for the widely deployed SNMPv1; or
accommodation of the various flavors of SNMPv2 that
were being deployed while they worked.

It is unacceptable to dictate to enterprises how they
should implement their code. Using application pro-
gramming interfaces was rejected, but they could be
defined as application service interfaces, so they only
describe the nature of the data that crosses boundaries
between modules. Enterprises merely need to under-
stand the concepts of the data that must be passed from
module to module.

However, that still had the effect of dictating how an
enterprise should build their implementation in specific
modules - still unacceptable. “The Architecture for
SNMP Management Frameworks” was changed to “An
Architecture for SNMP Management Frameworks”, to
show that enterprises could use a different architecture
if they chose.

But that still implied constraints for those who were
willing to follow this architectural model. The archi-
tecture was useful for describing the concepts, but the
constraint for a modular implementation, even if only
implied, was unacceptable.

An architecture could only be used to describe the
concepts and the conceptual interfaces contained in
the conceptual architecture - thus, “An Architecture for
Describing SNMP Management Frameworks”.

Support for Diverse Environments
The environments in which SNMP must execute vary
widely. Producers of simple managed devices want to
keep the resources used by SNMP to a minimum. At
the same time, there is a need for more complex config-
urations which can spend more resources for SNMP and
thus provide more functionality.

The SNMPv3 architecture keeps the competing re-
quirements of these environments in balance and allows
the more complex environments to logically extend the
simple environment. Whenever possible, the costs asso-
ciated with allowing support for extended functionality
is borne only by those who extend the functionality.

The subsystem and modular approach aids in this
goal by permitting modules to define a minimal imple-
mentation approach for those environments with severe
resource constraints, more complete implementation ap-
proaches for those environments where resources are
less constrained, and by permitting support for multiple
approaches within a given node.

VOLUME 5, NUMBER 1 DECEMBER, 1997

The Simple Times 6

SNMP Entity

An SNMP entity consists of an SNMP engine and one
or more associated applications. The engine contains
a Dispatcher, a Message Processing Subsystem, a Se-
curity Subsystem, and an Access Control Subsystem.
Applications use the services of the engine for sending
and receiving messages, authenticating and encrypting
messages, and controlling access to managed objects.

+---+
| SNMP entity |
| |
| +---+ |
| | SNMP engine (identified by snmpEngineID) | |

	+------------+ +------------+ +-----------+ +-----------+									
		Dispatcher		Message		Security		Access		

				Processing		Subsystem		Control		
				Subsystem				Subsystem		
	+------------+ +------------+ +-----------+ +-----------+									

| +---+ |
| |
| +---+ |
| | Application(s) | |
| | | |

	+-------------+ +--------------+ +--------------+							
		Command		Notification		Proxy		
		Generator		Receiver		Forwarder		
	+-------------+ +--------------+ +--------------+							

	+-------------+ +--------------+ +--------------+							
		Command		Notification		Other		
		Responder		Originator				
	+-------------+ +--------------+ +--------------+							

| +---+ |
| |
+---+

Dispatcher
The Dispatcher coordinates communications between
the subsystems, and differentiates between multiple co-
existent modules within a subsystem. It determines to
which application an incoming PDU should be directed.
It coordinates with potentially multiple transport map-
pings.

Message Processing Modules
The message format for SNMPv2 was an area of con-
tention because, once established, the format would be
fixed and immutable, and this meant it had to be very
close to perfect for all concerned. The requirements of
various segments of the community were incompatible.
The SNMPv2 Working Group could not reach consensus
on a single format. SNMPv2 was left with no standard
secure message for transferring management data be-
tween nodes.

By defining message processing in modules that can
be replaced or supplemented, the burden of perfection is
eliminated. The Working Group can accept the current

proposal to allow the standard to advance, but the mes-
sage processing, and its defined format, can be replaced
or supplemented if necessary.

One concern regarding the SNMPv2 message format
was its sheer size. The size of the proposed SNMPv3
message format is also large. If somebody can design a
message format that is smaller and more efficient than
the current design, the existing format can be super-
seded without necessarily changing the other conceptual
modules of the architecture.

That said, changing the message format could have a
very negative effect on interoperability, so the designer
of a new message format is likely to face a steep uphill
battle to convince the community to use the new format.
The architecture allows for new message formats, but
the marketplace is expected to discourage the develop-
ment of new formats.

Multiple message format modules can exist simulta-
neously, to permit support for new, and especially for old,
message formats. Message Processing Modules can be
developed for SNMPv1 and various flavors of SNMPv2.

Security Modules
The starting design included a security module taken
almost directly from the User-based Security Model used
in SNMPv2u and SNMPv2*. This module inherited the
desired ability to supplement or upgrade existing au-
thentication and encryption mechanisms as new mecha-
nisms became available. The design also permitted sup-
plementing or replacing the entire User-based security
module. The modules in the Security Subsystem may be
controlled by a Message Processing Module.

Support for previous security formats, such as SN-
MPv1 communities, can be added fairly easily. For
example, implementors may choose to support communi-
ties by mapping them to user-based security identifiers,
or by defining a separate module for community-based
security.

There have been a number of security models dis-
cussed during the evolution of SNMPv2/SNMPv3. Some
models, such as the party model, require parameters
that do not fit well with the requirements of the User-
based model. Security processing is defined in modules,
and the message processing module can call the appro-
priate module for a particular message. This permits
support for security models with different parameter re-
quirements, and to support co-existent security models.

Application Modules
SNMPv1 describes agents, which contain specific func-
tionality, and managers, which execute management
applications.

The starting design defined an engine which contained
modules for message processing, message security, and

VOLUME 5, NUMBER 1 DECEMBER, 1997

The Simple Times 7

local processing of PDUs. It also identified applications
that used the engine. In keeping with traditional SNMP
concepts, the applications executed only on managers.

Proxy was included in the design as a management
application. Proxy has historically been viewed as an
agent functionality, even though proxy agents generate
requests and receive notifications and responses, which
are manager functions.

The design showed Inform PDUs being issued by
management applications, while trap PDUs were issued
by the local processing module in the engine. To send
traps, the local processing module needed a trap table,
but then so did informs. The Working Group debated
combining informs and traps into one module, but would
this be a module in the engine (i.e. in an agent) or an
application external to the engine (i.e. in a manager)?

The concept developed that applications were not
limited to execution on a manager; an agent could be
described as executing specific applications, such that all
local processing is just a special case of an application.
All traditional processing can be broken down to five
types of applications - request generation, response
processing, notification sending, notification receiving,
and proxy processing.

A combination of these application modules would
exist in a traditional agent; a different combination
would exist in a traditional manager. Other existing
implementations contain non-traditional combinations
of applications, such as an implementation that emits
traps, but does not accept requests.

This line of thinking resolves some of the SNMPv2 is-
sues such as whether informs were generated by agents
or only by managers, and whether only agents should
have agentIDs/snmpIDs. The concepts of agent and
manager become only specific subsets of the possible
configurations of SNMP entities.

Additional applications can be defined that allow ex-
tensions to address new aspects of network operation
and control, such as applications for distributed man-
agement.

Since SNMPv1 is defined in terms of traditional agent
and manager functionality, and traditional agents and
managers can be described as a combination of applica-
tions, then applications can be used to describe SNMPv1
functionality. Therefore, the architecture can be used to
describe not only an SNMPv3 framework, but also the
SNMPv1 framework, and possibly the various SNMPv2
proposed frameworks.

Access Control Modules
The starting design provided no ability to use SNMP au-
thentication or access control services except for SNMP
messages. The developing Distributed Management
(DISMAN) Working Group designs would benefit from

access to the same services, not necessarily using an
SNMP message. It might also be desirable to use some
services and not others. For example, a Java script
executing under DISMAN control could be authenti-
cated using a Java authentication mechanism but access
SNMP managed objects. This access should be subject to
the same access control as an SNMP transaction. So it
would benefit DISMAN if the SNMP engine provided the
access control service, even when the SNMP engine did
not provide the authentication service.

While access control is commonly considered part
of security, analysis of the usages showed that there
was a distinct difference between the security processes
applied to messages and the security processes applied
for access control. Application modules need to use
access control services while processing objects, but
authentication and encryption are used while processing
messages. A message header is used while processing
message security, but the PDU is used while applying
access control.

There are certainly common factors, such as identi-
fication of the principal and the level of security pro-
cessing requested. These can be provided through the
service interface. The distinction was sufficient to get
consensus among the active participants that the MIB
objects could be described in independent MIB modules,
and the elements of procedure for access control could
be described in a module separate from the message
security procedures.

If access control is a separate module called only by
applications, it can be used by non-SNMP applications
running on the same system. Consistent access control
is possible without the onerous operational task of main-
taining parallel configurations of access control policy
databases for SNMP and non-SNMP applications.

Summary

This article has reviewed the evolution of some concepts
of “An Architecture for Describing SNMP Management
Frameworks”. The concepts are not new; they have been
refined from earlier versions of SNMP.

Hopefully, this architecture will encourage the de-
ployment of SNMPv3 and allow continued advances in
SNMP as the needs of network operation and control
change over time.

VOLUME 5, NUMBER 1 DECEMBER, 1997

The Simple Times 8

Security Features of SNMPv3
Uri Blumenthal, IBM Watson Research

Bert Wijnen, IBM Watson Research

The ultimate question a security system has to answer
is: “Should I permit this operation?” Naturally, in order
to be able to do that, several lesser questions have to be
answered first:

� Is the message specifying an operation unaltered
and timely?

� Who requested the operation to be performed?

� What objects are accessed in the operation?

� What are the rights of the requester with regard to
the objects of the operation?

The SNMP architecture divides the responsibility for
providing the answers to the questions above between
two subsystems: The Security Module is tasked with
the first two questions, while the rest fall to the Access
Control Module.

To deal with the “who” question, it is necessary to de-
fine that “who.” Thus, the SNMP architecture introduces
the term “principal.” A principal is the “who” on whose
behalf services are provided, or processing takes place.
A principal can be, among other things, an individual
acting in a particular role; a set of individuals, with each
acting in a particular role; an application or a set of
applications; and any combination thereof.

Since a principal may have to be identified both inside
and outside a given security model, there is a need
to have two identities: one specific for that security
model that may take any shape convenient for that
security model (for example, an ASN.1 OID to identify
a Party, or an octet string to identify a User), and the
other one, security-model-independent, that can be used
outside a particular security model. This last one, called
securityName, is a human-readable string.

Multiple security models

It is imprudent to expect that the view we have on
how security is accomplished can survive unchanged
forever, or even for the lifespan of the protocol. Old
security requirements may go away and new ones may
come up. Accommodating those new requirements may
demand that not only the cryptographic algorithms but
the whole approach to the problem must be changed.
It necessarily means, that it is not enough to be able
to replace cryptographic protocols - the security model
itself may have to be replaced.

Therefore, the proposed SNMP architecture supports
multiple security models. Moreover, it allows several
different security models to be used simultaneously by
an SNMP entity. SNMPv3 messages carry a field in
the header that identifies by which security model the
message must be processed.

To guarantee interoperability, one security model
must be defined and implemented by every compliant
SNMPv3 entity. It is called User-based Security Model
(USM) and its model number is 3.

User-based Security Model

Here are the primary threats the USM defends against:

� An unauthorized entity may alter an SNMP mes-
sage (issued on behalf of an authorized principal)
in-transit. (Modification of Information)

� An attempt of an unauthorized entity to perform an
operation by assuming the identify of an authorized
one. (Masquerade)

� Delay or replay of the messages to an extent greater
than can occur in natural conditions of network
service. (Message Stream Modification)

� Unauthorized entities can see the contents of SNMP
data exchange. (Disclosure)

It was decided that neither traffic analysis nor denial
of service need to be defended against, because (a) such
defense is nearly impossible to achieve; and (b) the
threat is not significant enough.

Identification

A principal in USM is represented by a user and iden-
tified by userName. The main purpose of a user is to
hold secret keys and some security-related information
like what cryptographic algorithms to use, etc. The
USM internal principal identifier userName maps to the
security-model-independent identifier securityName by
an identity transform. The userName is therefore a
human-readable string.

The USM identifies SNMPv3 entities by their snmp-
EngineID. SNMPv3 entities can be traditional agents
running on managed devices, traditional network man-
agement stations, mid-level managers, etc. The user-
Name is needed for auditing and authorization purposes
while the snmpEngineID is needed to identify the target
of an SNMP operation.

When two SNMP engines communicate, one is des-
ignated to be the authoritative SNMP engine. When
an SNMP message contains a payload that expects a

VOLUME 5, NUMBER 1 DECEMBER, 1997

The Simple Times 9

response (for example a get-request, get-next-request,
get-bulk-request, set-request or inform-request PDU),
then the receiver of such messages is authoritative.
When an SNMP message contains a payload that does
not expect a response (for example, an snmpV2-trap,
response or report PDU), then the sender of such a
message is authoritative. It is important because (a)
the keys that are owned by the principal but stored
in SNMP engines are localized to the authoritative
engine (see below), and (b) the timeliness indicators of
the authoritative engine are, well, authoritative. (The
non-authoritative SNMP engine maintains its notion of
the timeliness values from the authoritative engine and
updates its notion as appropriate to keep them in sync
with the authoritative one).

USM MIB

USM defines a MIB for the purpose of remote configura-
tion. While it is unreasonable to quote the whole MIB
group here, we provide the structure of the usmUser-
Table, since the items we will be describing are related
closely to that table.

UsmUserEntry ::= SEQUENCE

{

usmUserEngineID SnmpEngineID,

usmUserName SnmpAdminString,

usmUserSecurityName SnmpAdminString,

usmUserCloneFrom RowPointer,

usmUserAuthProtocol AutonomousType,

usmUserAuthKeyChange KeyChange,

usmUserOwnAuthKeyChange KeyChange,

usmUserPrivProtocol AutonomousType,

usmUserPrivKeyChange KeyChange,

usmUserOwnPrivKeyChange KeyChange,

usmUserPublic OCTET STRING,

usmUserStorageType StorageType,

usmUserStatus RowStatus

}

As you see, the table entry holds: a principal identifier
(usmUserName and usmUserSecurityName); a reference
to another entry in this table from which this entry
was cloned; authentication and privacy protocol dis-
criminants (which tell us what protocol to use); the
typical SNMP table row maintenance objects (usmUser-
StorageType, usmUserStatus); and several objects re-
lated to remote key update (usmUserAuthKeyChange,
usmUserOwnAuthKeyChange, usmUserPrivKeyChange,
usmUserOwnPrivKeyChange), that we will discuss later
on.

Since all the keys are localized (see below) to a partic-
ular SNMP engine, it is necessary to store the identifier

of the SNMP engine (usmUserEngineID), for which the
given keys for the user usmUserName are prepared
(since they will not work with any other user, or with
any other engine).

Keys

A user “owns” the keys - secrets that he shares with the
remote SNMP engines he manages. These secrets are
used by authentication and privacy protocols. Keys are
octet strings, and usually are derived from passwords
typed in by human users. USM provides for two keys
per user per SNMP engine: one key for message authen-
tication, and the other one for encryption. Since these
secrets are not retrievable, there are no objects in the
MIB to represent the keys directly; the cryptographic
keys are not “visible.”

Password to key:
Even though computers are good at dealing with ran-
dom strings, especially of fixed length, humans prefer
meaningful ASCII strings. Since humans represent the
majority of network administrators and 100% of pay-
ing customers, their preferences were accommodated in
USM design. However, the preferences of the computers
that would actually run the code and do the work,
weren’t forgotten either.

If you take a human-readable ASCII string (what a
typical user would choose as his password) and run a
cryptographically strong hash function over it, you will
get a pseudorandom sequence of bytes (usually of a
fixed-length), just what a computer would love to use as
a key. The USM password to key algorithm concatenates
the password with itself many times until it forms a 1
Megabyte string before the hash function is computed.
This slows down a possible dictionary attack, when
an adversary puts a whole dictionary in his computer
and runs the hash-function over each word from it in
turn, to see whether the resulting key will match the
cryptographic lock he’s trying to pick.

Key localization:
In order to allow a human user to have one password,
and at the same time to allow the remote engines to have
their secrets cryptographically independent from each
other, a key localization is employed (described in [1]). In
short, it converts a user password or a non-localized key
into a key, unique to a specific remote engine, using the
secret non-localized key and the remote engine’s publicly
known identifier as the input to a cryptographically
strong one-way function.

As a result, if an SNMP engine is compromised, only
communications between this one engine and the users
whose localized keys were stored in that engine, are

VOLUME 5, NUMBER 1 DECEMBER, 1997

The Simple Times 10

compromised. All the communications between those
users and other engines are still secure.

Key update:
It must be possible to distribute new sets of keys and
update values of existing keys over the wire without
encryption of the messages. The key update protocol is
crafted in such a way that it is infeasible to determine
the old key from the new key and the key update
messages. This is very important, because otherwise the
master key used to create new users could be compro-
mised.

Key update uses a cryptographically strong one-way
function to: (a) put an impenetrable barrier between the
old and the new keys, preventing backwards movement;
and (b) make the relations between the bits of the
old and the new key intractable both ways (forward
and backward), forcing the cryptanalyst to use only
the traffic protected by a given key in the attempts to
determine that key.

There is, however, a danger if a key for an engine ever
falls into the hands of an adversary. From that point
on, it is possible for the adversary to “drill forward.”
The adversary will know the current communication key
for as long as the adversary monitors all the traffic
to that engine and picks all the key update requests.
In order to make “drilling forward” more difficult, it is
strongly recommended that key update requests always
be protected by encryption, if at all possible.

The Textual Convention KeyChange defines the be-
havior of the objects responsible for key updates.

It is assumed, that there are secrets already available
on the SNMP engine whose keys we are updating.
Normally, there would be a “user template” - an entry in
the user table that is used for only one thing - providing
cryptographic material (initial keys) and information
(initial cryptographic algorithms) for creating new users.
Since it was chosen not to employ Diffie-Hellman key
negotiation, and encryption is optional, it is not feasible
to securely deliver a secret remotely, unless the remote
end already shares some secrets with us. Thus, whether
the secrets were distributed off-line, or were taken from
the preconfigured entries in the user table, by the time
we do a key update there is always an “old” secret that
we replace (modify).

Once you have your old secret and know what you
want to replace it with, the steps in the TC KeyChange
key update algorithm are:

1. Generate a random value (true randomness is pre-
ferred).

2. Compute a temporary value using the old secret and
the previously generated random value as input to
a cryptographically strong hash function.

3. XOR the result with the desired value of the secret
(the new secret) - this is the “delta.”

4. Send both the random value and the “delta” to the
engine, whose secret you wish to change.

5. The receiving engine reverses the above process,
and computes the new secret based on the old secret,
the random value provided by the sender, and the
“delta” provided by the sender.

However, it is not enough to just be able to update the
keys remotely. Both the user himself and the network
administrator must be able to change the keys for the
given user. This is not as easy as it may seem, due to
the intricacies of access control. Without making ac-
cess control unmanageably complicated, it was deemed
infeasible to configure it so that every user would be
able to change his and only his keys, but the network
administrator would be able to change anybody’s keys.

Thus, there are two key update objects per each key in
the user entry. One, usmUserAuthKeyChange, is for au-
thentication key updates by the network administrator,
and would not be within the accessible part of the MIB
tree of anybody else.

The other one, usmUserOwnAuthKeyChange, differs
from the previous object in one important detail: in
addition to implementing the algorithm defined by Key-
Change TC, before permitting the operation it checks
whether the requester of the operation has the same
userName as the “owner” of the row in which this object
resides. This means, that even though a user may be
granted write access to this object, he will be able to
modify only his own key. Precisely as designed, and
without increasing the complexity of access control.

Thus, the network administrator can configure the
initial keys for a user, while the user can do subsequent
key changes by himself. Of course, coordination between
the users and the network administrator is required - it
is easy to see that if the administrator starts changing
people’s keys without letting them know, nothing good
would come of it.

Authentication

The purpose of USM authentication is to tell with cer-
tainty what user the message is from, what engine it
is for, whether or not it was damaged en-route, and
with a lesser degree of assurance, whether this message
is fresh and not a replay. The authentication protocol
is determined by the usmUserAuthProtocol object in
the user table entry. Two authentication protocols are
defined for SNMPv3 USM: HMAC-MD5-96, based on
MD5 (RFC 1321), and HMAC-SHA-96, based on SHA-1
[2].

VOLUME 5, NUMBER 1 DECEMBER, 1997

The Simple Times 11

Data integrity and authenticity:
In order to provide integrity and authenticity, one gener-
ates a special cryptographic “fingerprint” of the message
one wishes to protect, and sends that fingerprint along
with the message. We call it a “fingerprint” because
it is as unique for the message, as fingerprints are
unique for human beings. Because of good cryptographic
techniques, such fingerprints are impossible (actually
infeasible) to forge. In cryptography, such a fingerprint
is named a Message Authentication Code (MAC). There
are several methods of obtaining (computing) a MAC.

In SNMPv3 USM, both data integrity and authen-
ticity are ensured by using a cryptographically strong
hash-function in HMAC mode (RFC 2104). HMAC is the
“top of the line” method of applying keyed hash functions
for authentication purposes.
In brief, the steps for the HMAC mode are:

1. Derive two temporary keys K1 and K2 from the
localized user key K;

2. Compute T = Hash(K2 | Msg);

3. Compute M = Hash(K1 | T);

4. The first 96 bits of M constitute the Message Au-
thentication Code (MAC).

HMAC is new for SNMPv3. Every compliant SNMPv3
engine must implement HMAC-MD5-96, and it should
implement HMAC-SHA-96. Note, that when HMAC-
MD5-96 is used, the key for it should be generated using
MD5, and when HMAC-SHA-96 is used, the key should
be generated using SHA-1.

Timeliness

This section deals with detecting old and replayed mes-
sages. Since the amount of material is large, and the
concepts are fundamental for SNMPv3, we “elevate”
the discussion of timeliness-related issues to a separate
section. So how do we ensure that messages we receive
are not “stale” (old) or replayed?

In general, synchronized clocks are used. Every mes-
sage carries a timestamp, which can be examined upon
receipt, and if the difference between the timestamp and
the clock value of the receiving engine is too large, the
message is rejected as old.

However, synchronizing the clocks can be a problem.
In addition to that, some SNMP entities may have
no battery-powered clocks (i.e. after reboot or power
failure their clocks start from zero). But if it is difficult
for one engine to keep track of another engine’s clock,
having each of them keeping track of the other is simply
intolerable.

Authoritative clock:
In every secure SNMPv3 communication between the
two engines, the authoritative engine has the “clock”
that is believed to be “correct” and it is the responsibility
of the non-authoritative engine to find out the value of
that “clock” and keep track of it.

The authoritative engine maintains two timeliness
values: engineBoots (how many times this SNMP en-
gine was rebooted) and engineTime (how many seconds
passed since the last reboot). These are not the same as
“real” clock, but the similarities are obvious.

Both timeliness values are present in the USM mes-
sage header and play an important role in replay detec-
tion.

The non-authoritative SNMP engine must figure out
the current timeliness values of the authoritative engine
it communicates with (possibly by sending an insecure
GET, and verifying the obtained values with an authen-
ticated request), and keep track of them. By providing
automatic clock synchronization (see below), SNMPv3
USM reduces the overhead of explicit clock retrievals to
a minimum.

Window of opportunity:
Since we realize that some time has to pass between
the moments when the message was encoded and the
moment we decode it, we have to have some window
of validity - that is, even though the time value from
the message is somewhat behind what we expect, the
message is still assumed to be good, despite the delays in
sending, transit and receiving. This window is not vari-
able or configurable. Thus, USM allows each message a
150-seconds-wide window of opportunity. Any message
whose “encoding time” is outside that window is deemed
unauthentic. The steps in the verification algorithm are:

1. If the engineBoots of the received message is greater
than our notion of it, we accept the message and
update our notions of both engineBoots and engine-
Time of that SNMP engine.

2. If the engineBoots of the received message is less
than our notion of it, the message obviously is
“stale” and is discarded.

3. If the engineBoots is equal to our notion of it, we
compare the engineTime of the message with our
notion of engineTime of that engine, and depending
on whether it differs by less than 150 seconds or not
we either accept the message, or discard it.

Note that this allows a message to be replayed within
150 seconds of its generation time. But since this situ-
ation is no different from a “normal” packet duplication

VOLUME 5, NUMBER 1 DECEMBER, 1997

The Simple Times 12

that occurs in normal network operation, network man-
agement applications must be able to cope with it. To as-
sist with sensitive operations (like modifying something,
where performing the operation immediately again can
cause damage), TestAndIncr objects exist in SNMPv3
and it is assumed that a responsible management ap-
plication will not attempt to modify anything without
taking reasonable precautions, such as including one
or more TestAndIncr objects in the SET operation. On
the other hand, it is obvious that a repeated retrieval
operation does not cause harm.

Clock synchronization:
We have two communicating engines and one has the
authoritative clock. The other one has to (1) learn the
value of the authoritative clock, (2) maintain its notion
of the clock and (3) periodically verify that its notion of
the clock is not too far off. In addition to that, the non-
authoritative engine must record the last received time
value from the authoritative engine. This saved value is
called latestReceivedEngineTime.

Initially, the non-authoritative engine has to explicitly
retrieve the time value from the authoritative engine.
From that point on, clock synchronization is automatic,
as long as the authoritative engine’s clock does not fall
behind the non-authoritative engine’s clock for more
than 150 seconds since the last secure communication.

Each secure message carries a time value (when it was
encoded to be sent). Upon arrival, this time value is
compared with the clock. If the difference is within 150
seconds, the message is timely.

If a secure message is within the time window and
comes from the engine with the authoritative clock,
and the clock value is greater than the latestReceived-
EngineTime for that engine, then the notion of the
time (engineTime) for that engine is updated. If the
received engineBoots value from the authoritative en-
gine is greater than the saved value, then the value is
updated for all three objects: engineBoots, engineTime,
latestReceivedEngineTime.

Replays:
Even though the following information belongs else-
where, to be fair to the reader, we will summarize here
how the “recent” replays (within 150 seconds) are dealt
with.

Every message has a message identifier - an integer
field msgID. This field should be different for every
request, and it is expected that at least for a 150 second
interval this will hold true for any implementation. A
request originator must match the responses it receives
with its outstanding requests using msgID, and it is
clear that there cannot be two responses with the same
msgID within a 150 second period. This is how the

originator detects the replays.
A receiver, on the other hand, cannot utilize msgID for

this purpose. The only downside of receiving reasonably
“fresh” but duplicated (replayed) retrieval requests is
time spent on processing them - they can cause no
other harm. Requests to modify the information are
more dangerous. They are dealt with adequately by the
sender including a TestAndIncr object in a SET request.
Thus, in a replayed message the object’s value will not
match the expected one and the operation will fail. This
is described in the Message Processing Model.

Privacy

Like the previous SNMP versions, privacy is optional.
Unlike SNMPv2p, only the scoped PDU is protected by
a privacy blanket.

If privacy is supported by a given engine, it must sup-
port the DES [3,4] encryption algorithm. The Encryption
algorithm is determined by the usmUserPrivProtocol
object in the user table entry.

Previous versions of SNMP had a problem because
the DES initialization vector (IV) was not changed from
message to message. This has been fixed in the USM.
The IV now differs for each encrypted message.

The encryption keys are obtained, localized, kept
and updated exactly the same way as those for au-
thentication. The objects usmUserPrivKeyChange and
usmUserOwnPrivKeyChange are responsible for that.
Note that if SHA-1 is used to obtain a DES encryption
key, the first 128 bits of the SHA-1 output are used and
the rest is discarded.

References

[1] Blumenthal, U., Hien, N., Wijnen, B., Key Derivation
for Network Management Applications, IEEE Net-
work Magazine 11(3), May/June 1997.

[2] National Institute of Standards and Technology
(NIST), Secure Hash Standard, FIPS Publication
180-1, April 1995.

[3] National Institute of Standards and Technology
(NIST), Data Encryption Standard, FIPS Publica-
tion 46-1, January, 1977; reaffirmed January, 1988.

[4] National Institute of Standards and Technology
(NIST), DES Modes of Operation, FIPS Publication
81, December, 1980.

VOLUME 5, NUMBER 1 DECEMBER, 1997

The Simple Times 13

SNMP Versions
David T. Perkins, SNMPinfo and Desktalk Systems

Confusion continues with regards to the similarities
and differences of the different versions of the SNMP
protocol. Also, there are many questions regarding
dependency between the SMI and the protocol versions.
This article attempts to clarify the confusion and answer
the questions.

IETF Terminology

The Internet Engineering Task Force (IETF) publishes
documents that are called Requests For Comments
(RFCs). These documents, even though called “requests
for comments”, are “final” versions of documents that
specify standards, operational practices, opinions, hu-
mor, etc. for the Internet protocol suite. (Documents
that are works in progress and made available for review
are called internet-drafts.) The subset of the documents
that specify standards are given a status of proposed,
draft, full, experimental, or historic. A document
meant to specify a standard enters the standards-track
as proposed, and advances to draft before becoming
a full standard after rigorous review, implementation,
deployment, and operational experience. A document
specifying a protocol, format, or procedure not yet ready
for standardization is given the label of experimental.
Documents that have been replaced by others, or whose
contents are no longer relevant have status of historical.

SNMP Protocol Versions

The versions of the SNMP protocol are:

� SNMPv1 (full): This is the first version of the pro-
tocol, and is defined by RFC 1157. This document
replaces the earlier versions that were published
as RFC 1067 and RFC 1098. Security is based on
community strings.

� SNMPsec (historic): This version of the protocol
added strong security to the protocol operations of
SNMPv1, and is defined by RFC 1351, RFC 1352,
and RFC 1353. Security is based on parties. Few,
if any, vendors implemented this version of the
protocol, which is now largely forgotten.

� SNMPv2p (historic): For this version, much work
was done to update the SNMPv1 protocol and the
SMIv1, and not just security. The result was up-
dated protocol operations, new protocol operations
and data types, and party-based security from SN-
MPsec. This version of the protocol, now called

party-based SNMPv2 is defined by RFC 1441, RFC
1445, RFC 1446, RFC 1448, and RFC 1449. (Note
this protocol has also been called SNMPv2 classic,
but that name has been confused with community-
based SNMPv2. Thus, the term SNMPv2p is pre-
ferred.)

� SNMPv2c (experimental): This version of the proto-
col is called community string-based SNMPv2. It is
an update of the protocol operations and data types
of SNMPv2p, and uses community-based security
from SNMPv1. It is defined by RFC 1901, RFC
1905, and RFC 1906.

� SNMPv2u (experimental): This version of the pro-
tocol uses the protocol operations and data types of
SNMPv2c and security based on users. It is defined
by RFC 1905, RFC 1906, RFC 1909, and RFC 1910.

� SNMPv2* (experimental): This version combined
the best features of SNMPv2p and SNMPv2u. (It is
also called SNMPv2star.) The documents defining
this version were never published as RFCs. Copies
of these unpublished documents can be found at
the WEB site owned by SNMP Research (a leading
SNMP vendor and proponent of this version).

� SNMPv3 (proposed): This version of the protocol
is a combination of user-based security and the
protocol operations and data types from SNMPv2p
and support for proxies. The security is based
on that found in SNMPv2u and SNMPv2*, and
updated after much review. The documents defining
this protocol will soon be published as RFCs.

SNMP SMI Versions

The Structure of Management Information (SMI) de-
fines the format for defining managed objects that are
accessed via the SNMP protocol, the data types of
objects, the format for defining events (called traps in
SMIv1 and notifications in SMIv2), and contains a few
administrative assignments. There are currently two
versions of the SMI, which are:

� SMIv1 (full): This version is defined by RFC 1155,
RFC 1212, and RFC 1215. An earlier version
defined by RFC 1065 is historic. The current version
is also called the concise format, since the earlier
version was quite verbose.

� SMIv2 (draft): This version is defined by RFC 1902,
RFC 1903, and RFC 1904. An earlier version is
defined by RFC 1442, RFC 1443, and RFC 1444 and
is historic. The earlier version, which has no widely

VOLUME 5, NUMBER 1 DECEMBER, 1997

The Simple Times 14

recognized name, defined a few data types which are
no longer supported in the current version of the
SMI or SNMPv2 protocol. These data types are BIT
STRING, UInteger32, and NsapAddress.

SMIv2 is a backward-compatible update of SMIv1, in
all cases except for data type Counter64. That is, it is
possible to mechanically create a definition of managed
objects in the SMIv1 format from a definition in the
SMIv2 format except for objects whose data type is
Counter64.

There is no complete mechanical conversion from def-
initions of managed objects in the SMIv1 format to the
SMIv2 format, since the SMIv2 format contains fields
for additional information that must be provided by the
designer of the definitions. Also, the ACCESS clause was
changed to MAX-ACCESS and its meaning changed,
and, thus, the values need to be reviewed when convert-
ing from SMIv1 to SMIv2. (You cannot simply use the
same values in all cases when you translate object defi-
nitions.) Finally, the SMIv2 format contains constructs
to define requirement specifications and implementation
specifications not found in the SMIv1 format.

By design, the format for the definition of managed
objects is independent of the protocol to access them,
except for objects with data type of Counter64. That data
type does not exist in the SNMPv1 and SNMPsec pro-
tocols. A conforming SNMPv1 or SNMPsec entity will
generate an ASN.1 parse error when parsing a message
containing a Counter64 data type. RFC 2089 defines the
behavior of a conforming bilingual (and multilingual)
agent that has access to objects with the Counter64 data
type.

Version Usage

At this time, only the SNMPv1 protocol has widespread
usage. The SNMPv1 protocol is most likely found in
every managed device and management platform that
supports SNMP. The SNMPsec protocol never saw com-
mercial availability. The SNMPv2p protocol has seen
limited commercial availability. Only one of the leading
device vendors has made available agents supporting
SNMPv2p. All indicators point to no new SNMPv2p
offerings and current offerings being replaced by SN-
MPv2c or SNMPv3. The SNMPv2u and SNMPv2* pro-
tocols saw no significant commercial offerings. Support
for SNMPv2c in commercial products has been limited,
but has been building in 1997. Now that SNMPv3
has been approved to enter the standards-track and for
publication, some vendors may not offer SNMPv2c and
instead, skip to SNMPv3.

At this time, there is widespread use and support of
both versions of the SMI. This is due in part to the policy

in the IETF that new versions of RFCs must specify MIB
modules in the SMIv2 format. Many commercial prod-
ucts that process MIB modules support both formats.

University Comment
Aiko Pras, University of Twente

Jürgen Schönwälder, TU Braunschweig

At this place readers familiar with The Simple Times
might have expected to see the Industry Comment. This
featured column was written by Marshall Rose, the
creator of The Simple Times and the driving force behind
all 16 issues of the past.

The Simple Times started back in spring 1992. The
various issues of The Simple Times not only presented
interesting articles, but also mixtures of thoughtful sum-
maries, answers to frequently asked questions, excellent
inside information and sometimes thought-provoking
discussions about future directions. Since its appear-
ance, The Simple Times has been very popular within
the SNMP community and old issues are still being
downloaded from the SimpleTimes Web server by people
who want to better understand why things are the way
they are. Nowadays, The Simple Times has nearly 5000
registered readers.

Marshall Rose left the network management area
about a year ago and his farewell seemed to ring the
death-knell of the The Simple Times. However, given the
immense amount of SNMP related work still going on
within the IETF, there was a need to re-active The Sim-
ple Times in order to document some of the evolution and
to have a place where people can publish their thoughts
on the future of Internet network management.

After some talks with Marshall and other people who
had previously contributed to The Simple Times, it was
decided to move the newsletter and the associated Web
server to a new home. The Web server is now maintained
by the University of Twente by the same people who
maintain the SimpleWeb server, and the editing work
is done as a joint project between the Technical Univer-
sity of Braunschweig (Germany) and the University of
Twente (the Netherlands). We would like to take this
opportunity to thank Marshall for all his help and the
time he has spend to make the previous 16 issues of The
Simple Times a reality.

The issue you are reading right now is the result
of this transition and we plan to continue The Simple
Times as the same newsletter it has been in the past.
This means that we continue to rely on help and contri-
butions from the SNMP community. As Marshall wrote
in the first issue:

VOLUME 5, NUMBER 1 DECEMBER, 1997

The Simple Times 15

Our job is simply to make the trains run on
time. When you like the contents, thank the
other volunteers. If an issue comes out late, you
know who to blame.

Standards Summary

Please consult the latest version of Internet Official
Protocol Standards. As of this writing, the latest version
is RFC 2200.

SNMPv1 Framework

Full Standards:

� RFC 1155 - Structure of Management Information
(SMI);

� RFC 1157 - Simple Network Management Protocol
(SNMP); and,

� RFC 1212 - Concise MIB definitions.

Proposed Standards:

� RFC 1418 - SNMP over OSI;

� RFC 1419 - SNMP over AppleTalk; and,

� RFC 1420 - SNMP over IPX.

Informational:

� RFC 1215 - A convention for defining traps for use
with the SNMP.

SNMPv2 Framework

Draft Standards:

� RFC 1902 - SMI for SNMPv2;

� RFC 1903 - Textual Conventions for SNMPv2;

� RFC 1904 - Conformance Statements for SNMPv2;

� RFC 1905 - Protocol Operations for SNMPv2;

� RFC 1906 - Transport Mappings for SNMPv2;

� RFC 1907 - MIB for SNMPv2; and,

� RFC 1908 - Coexistence between SNMPv1 and SN-
MPv2.

Experimental:

� RFC 1901 - Introduction to Community-based
SNMPv2;

� RFC 1909 - An Administrative Infrastructure for
SNMPv2; and,

� RFC 1910 - User-based Security Model for SNMPv2.

MIB Modules

Full Standards:

� RFC 1213 - Management Information Base (MIB-
II); and,

� RFC 1643 - Ether-Like Interface Type (SNMPv1).

Draft Standards:

� RFC 1493 - Bridge MIB;

� RFC 1559 - DECnet phase IV MIB;

� RFC 1657 - BGP version 4 MIB;

� RFC 1658 - Character Device MIB;

� RFC 1659 - RS-232 Interface Type MIB;

� RFC 1660 - Parallel Printer Interface Type MIB;

� RFC 1694 - SMDS Interface Protocol (SIP) Interface
Type MIB;

� RFC 1724 - RIP version 2 MIB;

� RFC 1748 - IEEE 802.5 Token Ring Interface Type
MIB;

� RFC 1757 - Remote Network Monitoring MIB;

� RFC 1850 - OSPF version 2 MIB; and,

� RFC 2115 - Frame Relay DTE Interface Type MIB.

Proposed Standards:

� RFC 1285 - FDDI Interface Type (SMT 6.2) MIB;

� RFC 1381 - X.25 LAPB MIB;

� RFC 1382 - X.25 PLP MIB;

� RFC 1406 - DS1/E1 Interface Type MIB;

� RFC 1407 - DS3/E3 Interface Type MIB;

� RFC 1414 - Identification MIB;

� RFC 1461 - Multiprotocol Interconnect over X.25
MIB;

� RFC 1471 - PPP Link Control Protocol (LCP) MIB;

� RFC 1472 - PPP Security Protocols MIB;

VOLUME 5, NUMBER 1 DECEMBER, 1997

The Simple Times 16

� RFC 1473 - PPP IP Network Control Protocol MIB;

� RFC 1474 - PPP Bridge Network Control Protocol
MIB;

� RFC 1512 - FDDI Interface Type (SMT 7.3) MIB;

� RFC 1513 - Token Ring Extensions to RMON MIB;

� RFC 1514 - Host Resources MIB;

� RFC 1525 - Source Routing Bridge MIB;

� RFC 1565 - Network Services Monitoring MIB;

� RFC 1566 - Mail Monitoring MIB;

� RFC 1567 - X.500 Directory Monitoring MIB;

� RFC 1573 - Evolution of the Interfaces Group of
MIB-II;

� RFC 1595 - SONET/SDH Interface Type MIB;

� RFC 1604 - Frame Relay Service MIB;

� RFC 1611 - DNS Server MIB;

� RFC 1612 - DNS Resolver MIB;

� RFC 1628 - Uninterruptible Power Supply MIB;

� RFC 1650 - Ether-Like Interface Type (SNMPv2);

� RFC 1666 - SNA NAU MIB;

� RFC 1695 - ATM MIB;

� RFC 1696 - Modem MIB;

� RFC 1697 - Relational Database Management Sys-
tem MIB;

� RFC 1742 - AppleTalk MIB;

� RFC 1747 - SNA DLC MIB;

� RFC 1749 - 802.5 Station Source Routing MIB;

� RFC 1759 - Printer MIB;

� RFC 2006 - Mobile IP MIB;

� RFC 2011 - SNMPv2 IP MIB;

� RFC 2012 - SNMPv2 TCP MIB;

� RFC 2013 - SNMPv2 UDP MIB;

� RFC 2020 - IEEE 802.12 Interfaces MIB;

� RFC 2021 - RMON-2 MIB;

� RFC 2024 - Data Link Switching MIB;

� RFC 2037 - Entity MIB;

� RFC 2051 - APPC MIB;

� RFC 2074 - RMON Protocol Identifier;

� RFC 2096 - IP Forwarding Table MIB;

� RFC 2108 - IEEE 802.3 Repeater MIB;

� RFC 2127 - ISDN MIB;

� RFC 2128 - Dial Control MIB;

� RFC 2155 - APPN MIB;

� RFC 2206 - Resource Reservation Protocol MIB;

� RFC 2213 - Integrated Services MIB;

� RFC 2214 - Integrated Services Guaranteed Service
Extensions MIB;

� RFC 2232 - DLUR MIB;

� RFC 2233 - Interfaces Group MIB;

� RFC 2238 - High Performance Routing MIB; and,

� RFC 2239 - IEEE 802.3 Medium Attachment Unit
(MAU) MIB.

Related Documents

Informational:

� RFC 1270 - SNMP communication services;

� RFC 1321 - MD5 message-digest algorithm;

� RFC 1470 - A network management tool catalog;

� RFC 2039 - Applicablity of Standard MIBs to WWW
Server Management; and,

� RFC 2089 - Mapping SNMPv2 onto SNMPv1 within
a bi-lingual SNMP agent.

Experimental:

� RFC 1187 - Bulk table retrieval with the SNMP;

� RFC 1224 - Techniques for managing asyn-
chronously generated alerts;

� RFC 1238 - CLNS MIB; and,

� RFC 1592 - SNMP Distributed Program Interface
(SNMP-DPI);

� RFC 1792 - TCP/IPX Connection MIB Specification;
and,

� RFC 2064 - Traffic Flow Measurement: Meter MIB.

VOLUME 5, NUMBER 1 DECEMBER, 1997

The Simple Times 17

Internet Resources

� IETF Home Page
http://www.ietf.org/

� The Simple Web
http://wwwsnmp.cs.utwente.nl/

� The Simple Times
http://www.simple-times.org/

� The SNMPv3 Page
http://www.ibr.cs.tu-bs.de/projects/snmpv3/

Calendar and Announcements

IETF Meetings:

� 40th Meeting of the IETF
December 8-12, 1997, Washington, DC, USA

� 41th Meeting of the IETF
March 30-April 3, 1998, Los Angeles, CA, USA

� 42th Meeting of the IETF
August 23-28, 1998, Chicago, IL, USA

Conferences and Workshops:

� Network Operations & Management Symposium ’98
February 15-20, 1998, New Orleans, LA, USA

� IEEE Workshop on Systems Management ’98
April 22-24, 1998, Newport, Rhode Island, USA

� Enterprise Management Summit ’98
August 3-7, 1998, Santa Clara, CA, USA

� Distributed Systems Operations & Management ’98
October 26-28, 1998, Delaware, USA

� Integrated Network Management ’99
May 10-14, 1999, Boston, MA, USA

Exhibitions and Trade Shows:

� NetWorld + Interop Singapore
March 30-April 3, 1998, Singapore

� NetWorld + Interop Las Vegas
May 4-8, 1998, Las Vegas, USA

� NetWorld + Interop Tokio
June 1-5, 1998, Tokio, Japan

� NetWorld + Interop London
October 13-15, 1998, London, UK

� NetWorld + Interop Atlanta
October 19-23, 1998, Atlanta, USA

� NetWorld + Interop Paris
November 5-7, 1998, Paris, France

� NetWorld + Interop Sydney
November 24-28, 1998, Sydney, Australia

VOLUME 5, NUMBER 1 DECEMBER, 1997

The Simple Times 18

Publication Information

Editors
Jürgen Schönwälder TU Braunschweig

Aiko Pras University Twente
Contact Information

E-mail st-editorial@simple-times.org

ISSN 1060–6068

Submissions

The Simple Times solicits high-quality articles of tech-
nology and comment. Technical articles are refereed to
ensure that the content is marketing-free. By definition,
commentaries reflect opinion and, as such, are reviewed
only to the extent required to ensure commonly-accepted
publication norms.

The Simple Times also solicits terse announcements
of products and services, publications, and events. These
contributions are reviewed only to the extent required to
ensure commonly-accepted publication norms.

Submissions are accepted only via electronic mail,
and must be formatted in HTML version 1.0. Each
submission must include the author’s full name, title, af-
filiation, postal and electronic mail addresses, telephone,
and fax numbers. Note that by initiating this process,
the submitting party agrees to place the contribution
into the public domain.

Subscriptions

The Simple Times is available in HTML and PostScript.
New issues are announced via an electronic mailing list.
Send electronic mail to

st-request@simple-times.org

with a Subject: line of

help

if you want to subscribe to this list. Back issues are
available via The Simple Times Web server:

http://www.simple-times.org/

VOLUME 5, NUMBER 1 DECEMBER, 1997

