
The Simple TimesTM

THE QUARTERLY NEWSLETTER OF SNMP TECHNOLOGY, COMMENT, AND EVENTSSM

VOLUME 4, NUMBER 2 APRIL, 1996

The Simple Times is an openly-available publica-
tion devoted to the promotion of the Simple Network
Management Protocol. In each issue, The Simple
Times presents technical articles and featured columns,
along with a standards summary and a list of Internet
resources. In addition, some issues contain summaries
of recent publications and upcoming events.

In this Issue:

Agent Extensibility
Introduction to Agent Extensibility : : : : : : : : 1
Overview of the AgentX Solution-Space : : : : : 3
Overview of the AgentX Problem-Space : : : : : 5
eSNMP, An Extensible SNMP Agent : : : : : : : 9
An Alternative Perspective on Agent Extensibility 14

Featured Columns
The SNMP Framework : : : : : : : : : : : : : : : 17
Frequently Asked Questions : : : : : : : : : : : : 18
Industry Comment : : : : : : : : : : : : : : : : : 19

Miscellany
Standards Summary : : : : : : : : : : : : : : : : 19
Internet Resources : : : : : : : : : : : : : : : : : 23
Announcements : : : : : : : : : : : : : : : : : : : 24

Publication Information 24

The Simple Times is openly-available. You are free
to copy, distribute, or cite its contents; however, any
use must credit both the contributor and The Simple
Times. (Note that any trademarks appearing herein are
the property of their respective owners.) Further, this
publication is distributed on an “as is” basis, without
warranty. Neither the publisher nor any contributor
shall have any liability to any person or entity with
respect to any liability, loss, or damage caused or alleged
to be caused, directly or indirectly, by the information
contained in The Simple Times.

The Simple Times is available via both electronic
mail and hard copy. For information on subscriptions,
see page 24.

Introduction to Agent Extensibility
Bob Natale

ACE*COMM

As chairman of the IETF’s SNMP Agent Extensibility
(AgentX) working group <agentx-request@fv.com>, I
am very grateful to the publishers of The Simple Times
for dedicating this issue to a series of articles on matters
of direct relevance to the AgentX effort. Prior to the IESG
approving a formal IETF mission in late 1995, a sizable
portion of the SNMP community – mostly implementors
rather than users – spent several years in self-organized
preparatory efforts. To many informed observers, over
much of that time, these informal industry efforts
seemed at best unproductive and at worst futile. A great
deal of effort was spent enumerating and dissecting all of
the significant problems that a standard extensible agent
technology would have to confront. In the meantime,
a variety of semi-standard and proprietary solutions
emerged which seemed to meet many users’ needs. None
of them, however, achieved overwhelmingly widespread
deployment, leading to a mix of seemingly permanent
islands of technology. That overall course of events
seemed to confirm the official IETF view of the time that
a standard solution would either be impossible to reach
and/or would be woefully ineffective if, in fact, one could
be fabricated.

Nonetheless, the need for a standard base from which
to respond to the growing demand for more flexible
and dynamic management of multi-component systems
– as opposed to single devices – continued to rise
in importance. It became common, for example, to
see computers of the server variety as a collection of
manageable components, including interfaces (e.g., MIB-
II), operating system and associated resources (Host
Resources MIB), peripheral devices (e.g., Printer MIB,
Modem MIB, RAID MIB), and key software applications
(e.g., RDBMS MIB, MADMAN MIB). And users want
– indeed, expect – to be able to manage this collection
as a single system. Further, the population of pos-
sible managed components continues to grow rapidly
(e.g., the emerging Applications MIB will open new
floodgates). What were once relatively simple devices
(from the SNMP perspective, at least) are now complex
collections of manageable components. Consider, as but

The Simple Times 2

a single example, any modern product which integrates
bridge, hub, router, and switch functionality, which also
supports a variety of interfaces and protocols (e.g., serial,
10Mb/100Mb Ethernet, FDDI, Token Ring, ISDN, and
ATM). The surge in demand to manage the desktop as
part of the enterprise and, eventually the requirement
to manage a myriad of home appliances and personal
accessories as integrated components of an individual’s
“techno-life support system” both serve to quash any
semblance of doubt with respect to the need for and value
of a standards-based solution to the problem.

The keys to success in meeting this burgeoning de-
mand, mirror those of the undeniable success of the first
generation of SNMP itself: deploy low-cost agents on all
the components as quickly as possible; ensure that those
agents do not interfere with the components’ principal
functions; and, give those agents a standard way to
interoperate with higher-order software elements.

The IESG chartered the AgentX working group accord-
ingly. Its goal is to define standards-track technology
for SNMP agent extensibility. The resulting technolo-
gy specification(s) must allow independently developed
subagents to communicate with a master agent running
on an Internet device. (This last sentence merits
re-reading.)

The charter stipulates that the AgentX technology
specification(s) will consist of at least one to as many
as three parts:

� (mandatory) a platform-independent protocol which
supports intra-agent communication within a device
or local area network;

� (optional) a MIB module, which, when implemented
by a master agent, allows an SNMP-based man-
agement application to monitor and control the
intra-agent communication service; and,

� (optional) a programmatic interface to the services
offered by that protocol.

The IESG explicitly directed the working group to devel-
op a solution which is adequate to achieve transparency
with respect to whether a SNMP request is processed by
a master agent and/or one or more subagents. This is
the second of the two major architectural imperatives
of the AgentX protocol, the first being the analogous
transparency with respect to the subagents’ view of the
master agent’s lineage.

Furthermore, the working group was directed to use
good engineering judgment in developing an approach
with the smallest reasonable footprint to achieve intra-
agent communication. As a consequence of that, the
working group may choose to avoid complete trans-
parency, if, at its discretion, this proves to be the more

effective approach. In that case, however, the working
group is obliged to document its decision criteria for this
engineering trade-off.

Finally, the IESG stipulated that:

“Although the working group will solicit existing
specifications and experience in this area, it will
produce a vendor-neutral technology specifica-
tion.”

Given that directive, and in light of the sizable amount
of time spent previously on analysis of the problems,
issues, and requirements, the chair sought to orient
the working group toward an initial review of the
solution-space (the set of published extensible agent
protocols and product specifications that were, indi-
vidually, meeting users’ needs in some fashion). The
first article in this special issue, then, is by Dale
Francisco <dfrancisco@strata.com> of StrataCom, who
also serves as the AgentX Editor. This article will give
you a brief introduction to the major primary sources and
pointers to them so that you can follow up in more depth.

The attempt to focus the working group’s attention
on this solution-space was not intended to avoid having
to deal with the problems, issues, and requirements;
however, it was a recognition that the community has
collectively spent a lot of time and effort on almost all
of those issues. At some point in such a process, you
have to be able to weigh the arguments and then make
some hard choices. Many people have helped us identify
the problem areas over the years and quite a few have
helped to formulate a decision and build a consensus
around it. However, no one has done more to help us
all get to the crux of almost every issue than Randy
Presuhn <rpresuhn@peer.com> of BMC/Peer. His article
is more than just a masterful summary of those past
contributions. It is also a new tool for the working
group to use in achieving closure on some more of these
issues. I am sure that you will have a good appreciation
for both the complexity of this problem-space and for
the possibilities for effective and efficient solutions after
reading Randy’s article.

One of the technologies in the AgentX solution-space
is Digital’s eSNMP, which can be seen as one possible
evolution of DPIv2, which is itself another element
of the solution-space. In his article, Mike Daniele
<daniele@zk3.dec.com> of Digital Equipment Corpo-
ration, implementer of eSNMP, provides a detailed
overview of the protocol itself and explains some of its
differences from DPIv2 and its possible relevance to the
eventual AgentX protocol. Those readers who would
like a concrete idea of what an extensible agent protocol
looks like and how it operates will get that from Mike’s
article. And I should observe that Mike is teamed with

VOLUME 4, NUMBER 2 APRIL, 1996

The Simple Times 3

Bert Wijnen <wijnen@vnet.ibm.com> of IBM as “point
men” on AgentX protocol design. Their job in that
role is to take the consensus positions as they begin to
emerge via the working group deliberations and turn
them into AgentX protocol specifications via appropriate
modifications to the existing DPIv2 specifications. This
is how we are mapping the problem-space resolutions
back on to the solution-space foundation.

Finally, Dave Bridgham <dab@epilogue.com> of Epi-
logue presents an uncommonly readable and persuasive
analysis of the proxy approach to agent extensibility.
Subtly, but clearly, Dave hits on the major design
difference between the proxy model and the extensible
agent model being pursued in the AgentX effort –
transparency to the management applications. The goal,
in that respect, for the extensible agent model, is to allow
the management applications to remain unaware of the
fact that the apparently monolithic native agent that is
responding to their requests at the well-known service
location (such as UDP port 161) is actually an agent
system of sorts, consisting of a master agent and poten-
tially many subagents, each representing a particular
managed component. Dave’s article in this issue outlines
the cost/benefit outcome of the information hiding in the
agent. The proponents of the extensible agent model
and the proxy model have plugged different factors and
formulas into that calculation and, not surprisingly,
each model will produce a positive cost/benefit ratio in
certain scenarios. Hence, both technologies have a role
to play in the marketplace. As time goes on and we
all gain more experience and the general technology
base continues to improve and end-user sophistication
continues to increase, it may well be that there will be
a pronounced converge of the two models into a single
solution.

In Conclusion

Regardless of the arguments, the marketplace will
appreciate and benefit from a higher degree of standard-
ization in this area of agent extensibility. Suppliers and
consumers of SNMP products and services will gain with
respect to both economic and usability metrics. AgentX
is the IETF strategy to make that happen!

Overview of the AgentX Solution-
Space

Dale Francisco
StrataCom

Like many other successful technical innovations, SNMP
was confronted fairly early with the problems posed by

widespread acceptance and use. One of the first such
problems to arise was this: if you’re going to manage
everything on your network with SNMP, how can you
write SNMP agents quickly enough to keep pace with a
constantly changing array of network equipment?

This problem is harder than it may first appear.
One of the things that makes it hard is that users
of network management systems stubbornly persist
in viewing the devices on the network, routers, telco
switches, workstations, and so on, as unitary entities
that, in principle, can be meaningfully reduced to green,
yellow, or red icons on a topology map. Builders of
routers, telco switches, and workstations are equally
adamant in viewing these devices as small ecosystems
(or perhaps bioregions) of sometimes cooperating, some-
times antagonistic, software and hardware entities.

The designer of an SNMP agent is somewhere in the
lonely middle between these two camps, aware of the
reasonableness and even the necessity of both points of
view. Viewing the agent as a provider of management
information, not only does it make conceptual sense
for one agent to provide all the information for one
device, it seems to be enshrined in SNMP itself, for it
is written that the agent shalt listen to the manager
on UDP port 161, of which there is exactly one per
managed device. But viewing the agent as a gatherer
of management information, the designer is forced to
face the messy world of agent instrumentation. In a
workstation, the knowledge of management information
is quite likely distributed among many user processes;
in a telco switch, it may reside in different modules with
different processors and different operating systems.
This real-world messiness would seem to be best handled
by lots of little agents rather than one big one.

When confronted with such a dilemma, SNMP agent
designers, having read the same books and gone to the
same schools, soon think “divide and conquer”, and not
long after that they think of interposing a new layer
or protocol. And as is often the case with ideas whose
time has come, different people come to similar designs
independently. Two of the earliest such designs for
extensible agents were DPI and SMUX.

Paleo-agent-ology: SMUX and DPIv1

In 1990 or thereabouts, several people got together
one afternoon and designed SMUX, which was later
specified in RFC 1227. Their idea was clear and clearly
expressed: let the SNMP agent listen for and respond
to all management requests for a single device, but let
it multiplex the handling of requests among (possibly
several) local entities, called SMUX peers, each of which
is responsible for instrumenting some part of the device’s

VOLUME 4, NUMBER 2 APRIL, 1996

The Simple Times 4

MIB. By allocating to two different entities the tasks
of providing and gathering management information,
and interposing a protocol between these entities, the
designers of SMUX hit upon an idea that is at the core
of all extensible agent schemes that have followed.

Let’s pause here to define some terms. An extensible
SNMP agent is one which allows the addition, at
run-time, of support for arbitrary MIB modules that
were not known at the time the agent was built. This is
quite different from the first generation of SNMP agents,
known as monolithic agents. An extensible agent is
made up of what is known as a master agent (SNMP
agent in SMUX), a single entity that is responsible for
receiving management requests and sending manage-
ment responses; and zero or more subagents that are
responsible for instrumenting various parts of a MIB. A
subagent takes responsibility for a part of the device’s
MIB by registering with the master agent. The division
of labor between the master agent and its subagents
allows the extensible agent to appear to be a single
entity to the management station; in fact, from the
outside, it is indistinguishable from a monolithic agent.
But internally, the extensible agent has the flexibility
to adapt to changed circumstances by registering new
subagents that are responsible for new functionality.

Despite its simplicity and conceptual integrity, SMUX
had its problems. Notable among these were:

� The sysUpTime problem. RFC 1156 defined
sysUpTime as “the time (in hundredths of a second)
since the network management portion of the system
was last re-initialized.” This is fine for a monolithic
agent, but what does it mean, exactly, when what
appears to the management station to be a single
agent is actually a menagerie of a SNMP agent and
several SMUX peers, all possibly coming and going
at different times?

� The out-to-lunch SMUX peer problem. Section 3.1.4
of the SMUX specification (RFC 1227) says that
the SNMP agent should process each varbind in
an incoming request sequentially, and block when
a SMUX peer is contacted. What happens when one
peer goes away or hangs, but the agent itself and
possibly other peers who are responsible for some of
the varbinds in the request are still functional?

� The performance problem. SMUX was essentially
an elaboration of SNMP itself; though there were
new messages, for instance, to handle the registra-
tion of a SMUX peer with the SNMP agent, the core
protocol between the agent and its peers was SNMP,
so that the number of SNMP PDU decodings and
encodings to handle for each management request
was, in the best case, doubled.

Having briefly examined SMUX and gained an appre-
ciation of some of the basic features (and problems) of
extensible agents, we can step back slightly in time
to 1989 and examine another early extensible agent
protocol, the SNMP Distributed Protocol Interface (DPI)
version 1.0, which was specified in 1991 as RFC 1228.
DPI was developed by IBM beginning in 1989; in that
year DPI agents were actually being used to manage the
NSFnet backbone. IBM eventually developed versions
of DPI for OS/2, AIX, AS/400, and for the mainframe
operating systems MVS and VM.

Like SMUX, DPI separated the agent functionality
into an SNMP agent and one or more subagents. Again
as with SMUX, the SNMP agent was responsible for
the interface with the management application, while
the subagents were responsible for different subtrees of
managed objects. An important difference, and one that
has appeared in many extensible agent implementations
since, was that DPI, instead of using SNMP PDUs
between the SNMP agent and the subagent, specified
its own lightweight protocol for agent-subagent com-
munication. (In addition, the original version of the
DPI specification included an example subagent API.) In
1994, three years after the publication of DPIv1, based
on their considerable implementation experience, IBM
researchers offered a much more detailed version of the
DPI specification, DPIv2, in RFC 1592.

The original version of DPI, though it offered improved
performance relative to SMUX, suffered from some of
the same problems as SMUX with regard to sysUpTime
semantics and hung subagents. And perhaps even
more than with SMUX, which included a two-phase
commit, there were problems satisfying the SNMP
requirement that set requests appear to take effect “as
if simultaneously” when the processing of set requests
was distributed across multiple subagents.

Recent extensible agents

Based on the promising experience of SMUX and DPI,
several extensible agent products and implementations
have appeared in the last few years. Extensible SNMP
was developed at Digital in 1995 as a sort of modified
DPI. It followed the basic DPI model, but simplified some
of the message formats by reducing configurable options.

In parallel, as it became clear that there was a large
market for extensible agents, other commercial products
such as Envoy (Epilogue Technologies) and EMANATE
(SNMP Research) appeared on the scene. Typically, the
advantages that commercial products offered over some
of their publicly-specified predecessors were increased
performance (with versions optimized for particular
hardware and particular operating systems), and greater

VOLUME 4, NUMBER 2 APRIL, 1996

The Simple Times 5

flexibility; for instance, increased options for subagents
to register which parts of a MIB module, even down to
the instance level, that they were responsible for.

Though there’s no question that commercial extensible
agents have improved the state-of-the-art, it’s clear
that a standard for interoperability is needed if SNMP
agent extensibility is to achieve its true promise. At
present, the dream of having a single network device that
comprises modules from different vendors, each with one
or more subagents cooperating with a device-wide master
agent, remains unattainable unless all the vendors
happen to be using the same extensible agent product.

The Next Step

The participants in the SNMP agent extensibility work-
ing group of the IETF are in the fortunate position of
having as examples several alternative implementations
of extensible agents, some of which have been field tested
for years. We also have a clear and compelling rationale
for creating a standard SNMP extensible agent protocol:
it is unlikely, in the face of the continuously accelerating
growth in networking technology and innovation, that
SNMP will remain a universal and useful protocol unless
there is a standard way to dynamically add support for
new MIB modules to existing agents. As seen in the
next article, experience shows what is required of an
extensible agent protocol in order to provide the same
functionality as the best of the current implementations,
and to provide it in an open standard that vendors will
find it in their own interest to support.

Overview of the AgentX Problem-
Space

Randy Presuhn
Peer Networks, a division of BMC Software

Developers in the area of agent extensibility have iden-
tified seven broad areas of requirements for a subagent
protocol specification:

1. transport requirements;

2. association requirements;

3. operational requirements;

4. registration requirements;

5. inter-subagent requirements;

6. visibility requirements; and,

7. specification requirements.

Subsequent exploration has led to a more detailed
set of possible requirements. This article maps out
each of these areas, identifying regions of consensus,
disagreement, and research.

Transport Requirements

What level of QoS (Quality of service) is required
to carry the subagent protocol? Are specific
transports needed?

Subagent protocols can be used both within and between
systems. This leads to the requirement that at least one
standard transport mechanism be defined. This does not
preclude vendors from employing additional transports
optimized for specific environments. For example, UNIX
domain sockets or IPC mailboxes might be attractive
on some platforms. It is generally agreed that vendors
should be free to support such transports in addition
to any standardized ones. In pre-AgentX discussions,
there seemed to be strong resistance to defining a specific
transport. Within the AgentX effort, there appears to be
general recognition of the value of defining a standard
transport, even if vendors will define additional ones of
their own.

The minimal quality of service required by most sub-
agent protocols appears to be an 8-bit clean, connection-
oriented byte-stream. (There is also one proposal that
is based on intra-system UDP, assuming a very low
probability of packet loss or duplication.) TCP/IP is
recognized as a widely-available transport meeting these
requirements. For a subagent protocol to be carried over
something not meeting these requirements, such as an
unreliable datagram transport or noisy byte-stream, a
convergence layer would be needed.

The strongest argument for using a connectionless
transport like UDP with a convergence layer is given in
RFC 1592: per-process limitations on the number of open
file descriptors in some environments. By separating
the design of a convergence layer from that of the
subagent protocol, we avoid having to add the complexity
of data integrity and retransmission mechanisms to the
subagent protocol.

A very special case of the transport issue is the possible
choice of DLL as a communication mechanism. In this
case, however, the level of interoperability is really at the
API level, and will not meet inter-system requirements.
It is possible to define an API that makes the choice of
communication mechanism transparent to the subagent
developer.

An issue that straddles the border between transport
and association requirements is the handling of confiden-
tiality and authentication. In all the proposals to date,
any confidentiality has to be provided by the underlying

VOLUME 4, NUMBER 2 APRIL, 1996

The Simple Times 6

transport, with no standardized transport mapping to
support confidentiality defined. In the existing pro-
posals that provide some level of authentication, weak
authentication is built into the agent-subagent protocol.
The requirements for authentication and confidentiality
between the master agent and its subagents has not
received much discussion.

Association Requirements

What information is needed to establish, main-
tain, and terminate an association between
master agent and subagent?

Five major sub-areas of association requirements are:

� privacy handling;

� authentication handling;

� details of association establishment;

� details of association maintenance; and,

� details of association termination.

As mentioned above, whether privacy handling should
occur as part of the subagent protocol or be left as a
matter for the underlying transport is a design decision
with significant implications. There have not been any
calls to incorporate privacy into the subagent protocol
itself.

The association establishment phases of the published
subagent protocols provide for the identification of the
subagent using a trivial form of authentication. This
minimal identification is required in order to maintain
the sysORTable and various subagent MIB modules.
Whether stronger authentication is needed (in either or
both directions) remains an open issue. Whether strong
authentication should be left to the underlying transport
or included as part of the subagent protocol is also an
open issue.

For most subagent protocols, association establish-
ment is a simple two-way handshake. This allows
limited negotiation of parameters for the association and
transfer of useful bits of information. The parameters
that have generated the most interest are limits on the
number of varbinds per PDU, timeouts used to detect
lockup, and identification of the naming scope. The
additional bits of information that have been considered
include the time base used to compute sysUpTime.

The significance of the requirement for negotiation
of the number of varbinds per PDU is currently being
debated. The arguments for are primarily in terms of
providing some level of compatibility with existing DPI

instrumentation; the arguments against are in terms of
efficiency and protocol complexity.

For the remaining details of association establishment,
the recurring issue is whether specific parameters should
be considered properties of a particular registration or of
the association as a whole, or whether the association
level parameters would serve as defaults for registra-
tions. Since there is a strong requirement to support
multiple naming contexts over a single association, and
since the timeout characteristics of naming scopes may
differ, it looks like the design will be left with a choice
between treating these as part of the registration dialog
or handling them in both places. A subtle point is that
there must be a sysUpTime for each naming context,
and that these don’t necessarily all have the same value.

Association maintenance can take several forms. De-
pending on the characteristics of the underlying trans-
port, some form of keep-alive may be useful to detect
subagent lockup. In fault-tolerant configurations, it
may also be desirable for subagents to detect loss of
connectivity to the master agent. Previous discussions
of the impact of transport outages led to the conclusion
that there was no requirement for an association to
be maintained across successive transport connections.
In environments with highly unreliable transports, a
convergence layer providing session maintenance for the
association could be used.

It may be convenient to handle sysUpTime mainte-
nance (e.g., notification of discontinuities) as part of a
keep-alive mechanism, but, since sysUpTime disconti-
nuities may be asynchronous to subagent operations, the
protocol elements to support sysUpTime maintenance
need to be decoupled from management-initiated proto-
col operations.

Most subagent protocols have some provision for an
orderly association termination procedure. Only two
issues have surfaced here: whether the extensive status
codes provided by SMUX and DPIv2 have actual value,
and whether termination of a subagent association
should affect sysUpTime. The emerging consensus
seems to be that sysORTable is the place to record
the comings and goings, and that sysUpTime should be
unaffected.

Operational Requirements

All SNMP and SNMPv2 operations must be
supported (at least in the agent role), and the
behavior must, from a protocol perspective, be
indistinguishable from a monolithic agent’s be-
havior. That the boundaries between subagents
should not be visible at this level is taken as a
fundamental requirement.

VOLUME 4, NUMBER 2 APRIL, 1996

The Simple Times 7

These requirements raise a number of issues:

� handling multiple naming scopes;

� multi-phase commit protocols to preserve set se-
mantics;

� access control issues; and,

� inform handling.

A key operational issue is the representation of multiple
naming scopes for operations. Tied to registration
issues (see below), the essence of the problem is that
the mapping of community strings (or the old SNMPv2
contexts) to naming scopes is not one-to-one. Unfor-
tunately, the work in the Entity MIB working group
<entmib-request@cisco.com> does not appear to be
resolving this problem. Conflicting goals surface here for
different applications of subagent technology. In some
cases, there is a desire to have access to the literal value
of the community string from the original SNMP request.
In most other cases, what is needed is an unambiguous
cookie that will allow a subagent to determine which
naming scope should be used to perform an operation.

Discussion of the requirements for multi-phase commit
protocols to support set semantics has to begin with the
recognition, formalized in the error codes of SNMPv2,
that there are cases where the “as if simultaneously”
requirement simply cannot be met, even in monolithic
implementations. Consider, for example, Keith Mc-
Cloghrie’s discussion of this topic in Volume 2, Number
6 of The Simple Times.

The changes required to existing protocols to support
the SNMPv2 error codes are relatively minor: adding a
response to the second phase of the SMUX commit, or a
transaction end on the DPIv2 commit. However, addi-
tional phases help in handling important, if seemingly
pathological, cases.

The protocol needs to take account the various resource
reservation and release strategies that are possible, and
to not assume that all subagents have been implemented
using the same allocation discipline, since that discipline
may be inalterably embedded in the design of the system,
of which the subagent is a minor component.

The most difficult case to handle is where the accept-
ability of a proposed value for a variable is dependent on
a variable supported by some other subagent, which is to
be modified in the same request. To a certain extent, one
might argue that this is poor implementation strategy,
poor MIB design, or both.

In general, rollback may not be possible for sets with
action semantics. Although adding additional phases
can bound the problem, the consensus seems to be that
these cases are better handled as MIB design issues.

The requirements appear to boil down to a four-phase
procedure:

1. local checking and resource allocation;

2. cross-checking for shared resources, which cannot
occur until it is known that all involved subagents
have done their resource allocation;

3. commit/rollback, which cannot occur until all cross-
checking is complete; and,

4. resource release/undo is needed to bound the trans-
action and to ensure that the master agent gets the
correct response code.

In order to generate the response codes required by
SNMPv2, each of these requires a message to the
subagent and a corresponding response.

As an optimization of the high frequency case, where
all the varbinds in a request will be handled by a single
subagent, it has been suggested that the protocol should
employ a single exchange, rather than a multi-phase
transaction.

A final nasty aspect of set processing, which is really
a general SNMP issue, is whether it is permissible to
concurrently process set operations for different naming
scopes. It is fairly clear that concurrent processing of
set operations within a single naming scope would be
risky, since there is no reasonable way to predict the side-
effects of an operation. Whether an operation (like reset)
must be assumed to potentially affect multiple naming
scopes requires additional discussion.

Another area with operational implications is the
handling of access control. The current consensus is
that all access control handling is the responsibility of
the master agent. It should be noted that some MIB
modules, such as the RMON alarm group, may require
knowledge of a system’s access control policy.

The final area of operational issues has been the
handling of informs. Part of the problem is coming to
an understanding of what informs are. Even this has
been subject to considerable debate within the SNMP
community. There may be a requirement for subagents
to subscribe to, and to issue, informs.

Registration Requirements

How much power and flexibility are needed for
subagents to identify their area(s) of responsibil-
ity?

The registration process (and, as a result, the details
of operation dispatch) has been the subject of extensive
discussion. The following requirements have emerged,
based on the capabilities of existing solutions:

VOLUME 4, NUMBER 2 APRIL, 1996

The Simple Times 8

� support for registration of entire groups;

� support for registration of individual objects;

� support for registration of whole tables;

� support for registration of table rows (different
columns, index value constant);

� support for registration of table slices (different
index values, set of columns constant); and,

� support for registration of table pages (constant set
of columns, subset of indexes constant).

Some existing protocols handle only some of these;
others can accommodate all of them, with varying
degrees of efficiency in the registration process. All of
these can be described in terms of subtree registration.
Adding a flag to identify single-instance registration can
significantly optimize master agent operation dispatch.
The registration of individual table rows, slices, and
pages could be done more efficiently if the subtree
were represented as a limited regular expression for
a family of subtrees, rather than requiring a separate
registration for each column of the table in question. The
tradeoff is between the number of transactions required
to perform registration and the complexity of the syntax
representing a registration.

Additional registration issues include:

� handling multiple naming scopes;

� handling priority; and,

� handling overlapping requests.

The only difficulty in supporting multiple naming scopes
has been to reach agreement on the representation of
a naming scope identifier. From an implementation
perspective, the only operations needed on this type are
assignment and comparison for equality.

Discussions of handling registration priority led to
the conclusion that registration priority is needed for
handling redundant and fault-tolerant configurations,
that the complexity is equivalent to that of handling
registration-time based precedence, and that the notion
is needed within an implementation to handle collisions
anyway.

Registration overlap occurs when an OID is a subtree
of two registrations at the same priority. The most useful
way to handle this case is to treat the longer registration
as having the better priority. This conclusion is the
result of implementation experience with protocols using
different resolution strategies. The deciding case is
where one subagent is responsible for handling requests
for the creation of arbitrary new rows, and the new

rows, once created, will be the responsibility of separate
subagents. (For example, consider application processes
forked off as a result of create operations – if the shorter
subtree registration took priority, the table entries for
the forked processes would not be manageable.)

Inter-subagent Requirements

What support for information access between
subagents is needed (e.g., can one subagent
search another’s tables)?

The requirements for inter-subagent communications
include:

� index reservation and coordination;

� retrieval of arbitrary MIB variables by subagents;
and,

� special-case MIB variables, such as sysUpTime.

Any such operations will have to be qualified by a naming
scope. Allowing subagents to talk to each other, even
indirectly, raises issues of access control. Ideally, these
issues could be resolved in a manner consistent with an
emerging SNMPv3 access control framework.

The requirement for index reservation and coordi-
nation has found vocal and convincing support. The
problem, simply stated, is that when different subagents
implement different rows of a table, there is a need for
a coherent index reservation policy. For some indexes,
this policy is inherent in the index semantics, such as
the use of a process ID. For others, such as an ifIndex,
more sophisticated infrastructure is needed to ensure
consistency of index values and references.

A key requirement is that the protocol state machine
for index reservation and query must be able to function
independently of the state machine for processing set
and get operations, since row creation can happen due
to local action as well as due to management request.

Index reservation is distinct from the registration
protocol for several of reasons. The most important one
is that the lifetime of a reservation may be far greater
than that of a registration. For example, the reservation
may be a result of system configuration or provisioning,
determined long before a specific subagent is activated.
Another reason is that the same reservation may be
of interest to a number of entities, as in the case of
ifIndex.

There appears to be general agreement that the
full range of index syntaxes should be supported by
the solution, although merely handling ifIndex alone
would have significant value.

Subagent access to another subagent’s MIB variables
is not fully settled as a requirement. If this is accepted

VOLUME 4, NUMBER 2 APRIL, 1996

The Simple Times 9

as a requirement, it will be necessary to define the
access protocol so as to avoid deadlock situations with
respect to SNMP-initiated operations. A special case of
this is support for MIB modules like the RMON alarm
group, which also require knowledge of access control
information.

Visibility Requirements

What information should appear in a subagent
MIB to meet the requirements of managers
that need to know the internal structure of the
managed system?

Although a manager will generally not be interested in
what specific constellation of subagents is used to instru-
ment a system, there are cases, especially in debugging
scenarios, where a manager may need to find out which
subagent is responsible for what. MIB modules have
been defined for existing protocols. They are remarkably
similar; most of the discussion, product deployment,
and research experience leads to the conclusion that
these MIB modules are probably overkill, recording more
information than is actually useful. Trimming the excess
from these MIB modules remains to be done.

Specification Requirements

What abstract syntax notation should be used for
the protocol definition, and which set of encoding
rules should be used?

Two major debates have occurred in the area of specifi-
cation requirements. The first is the choice of protocol
definition language. Some subagent protocols have been
defined using ASN.1; others have used ad hoc notations.
The AgentX effort is, at this time, basing its work on a
document which uses an ad hoc notation. The issues are
ones of clarity and rigor.

The second debate, quite distinct from the choice of
specification language, is the choice of transfer syntax.
The choices are between the formally defined encoding
rules, such as BER, PER, DER, or XDR, and various ad
hoc schemes. The AgentX effort is, at this time, basing
its work on a document which uses an ad hoc encoding
scheme. At issue are clarity, implementation complexity,
and verifying the correctness of implementations, as well
as performance.

In Conclusion

By now it should be clear that the overall requirements
and many design tradeoffs are well understood. With
the breadth and depth of expertise in the working group,

coming to conclusion on these fairly clear-cut issues
should not be hard.

The difficult part of the AgentX working group’s task
will be to reach agreement where there’s no clear leader
among the technical alternatives, or where the group is
not able to agree on metrics for evaluating alternatives.
Here we must stick to principles of clarity and simplicity,
tempered by practical experience and sensitivity to our
customers’ needs.

eSNMP, An Extensible SNMP Agent
Mike Daniele

Digital Equipment Corporation

eSNMP is the native extensible agent and associated
framework for Digital UNIX (formerly known as DEC
ALPHA OSF/1). It was developed by the operating
system group, to provide a mechanism for ISVs and
customers to share in the SNMP on our platform. It is
not a commercially-available drop-in solution for other
environments.

Overview

eSNMP uses the common paradigm of a single master
agent and multiple independent subagents. The protocol
used between them is a variant of DPIv2, modified as
necessary to support our required functionality.

The following diagram illustrates the major compo-
nents of the framework:

Master Agent Subagents
+-----------------------------+ +-----------------------------+
+-------------------------+	+-----------------------------+															
	Registry			+-----------+												
	o o o				Method											
		\ /	\ / \			+-----------+	Routines									
	o o o o o o o															
							API		+-------+							
	/ \	-	-	-	-					client			Object			
	o o o o o o o							Type								
				+-----------+ +-		-+										
	+----------++---------+				Table											
		Dispatcher		Registrar				=================		===						
	+----------++---------+				API routines +-------+											
+-------------------------+																
+--------+ +--------------+		+-------------------------+														
	SNMP		eSNMP/DPI				eSNMP/DPI Engine									
	Engine		Engine			+-------------------------+										
+--------+ +--------------+		+-------------------------+														
+--------+ +--------------+			AF_UNIX													
	UDP		AF_UNIX			+-------------------------+	-+									
+--------+ +--------------+	+-----------------------------+															
+-----------------------------+

| ˆ ˆ |
/\ || ˆ | | ˆ | | | |
|| || | | | | {Control} | | | |
|| || | | | +-OPEN,REG,UNREG,TRAP,PING-+ | | |

SNMP || | | +--------RESP, CLOSE-----------+ | |
Request || | | | |

|| || | | {Data} | |
|| || | +------GET,NEXT,BULK,SET,COMMIT,UNDO,CLEANUP-----+ |
|| || +-------------------RESP-----------------------------+
|| SNMP
|| Response
|| ||

\/

eSNMP/DPI runs over UNIX domain sockets, so both
sides need to support this transport and know where to
rendezvous.

VOLUME 4, NUMBER 2 APRIL, 1996

The Simple Times 10

The master agent’s dispatcher and registrar are the
algorithms by which it accepts registrations, associates
requested MIB variables with a particular subagent, and
communicates with those subagents. The object-type
table in the subagent is emitted by a MIB compiler
back-end tool (we used mosy and snmpi from ISODE,
with some modifications).

SNMP is transmitted between the master agent and
the management application only. Communication be-
tween the master agent and subagents is via eSNMP/DPI
only. DPI is not encoded using the BER, and we kept
the same general encoding and packet formats. As a
result, both sides contain an engine for eSNMP/DPI
handling. Each packet has some explicit (header) format
and some variable length fields. The variable length
fields (including OIDs) are encoded as null-terminated
ASCII strings.

Each eSNMP/DPI packet starts with a fixed header:

.--.
| Layout of eSNMP packet header. Present in all packets |
+--------+------+--+
| OFFSET | SIZE | FIELD |
+--------+------+--+
| 0 | 2 | packet length |
+--------+------+--+
| 2 | 2 | packet ID |
+--------+------+--+
| 4 | 1 | protocol major version |
+--------+------+--+
| 5 | 1 | protocol minor version |
+--------+------+--+
| 6 | 1 | packet-flags |
+--------+------+--+
| 7 | 1 | packet type |
+========+======+==+

This permits code to assign a header pointer to the
start of a suitably aligned receive buffer. The remainder
of the packets are dependent on packet type. We opted
for native-byte ordering in the headers (which is possible
since eSNMP is restricted to a single host system), but
eSNMP uses network-byte ordering of data lengths and
values. This doesn’t reduce performance as these fields
fall on arbitrary byte boundaries and must be parsed
byte-by-byte. (We are also hedging against future off-
host subagents.)

The API

It’s clear from the diagram above that eSNMP operations
are more complex than traditional SNMP operations;
however, most of the eSNMP complexity is hidden behind
an API (represented by the double horizontal line above).
Everything below that line is contained in a shareable
runtime library provided by the operating system.

To build a subagent the developer must:

� compile the relevant MIB specs;

� write the API client code that handles the Control
part of the eSNMP/DPI protocol;

� write its objects’ method routines; and,

� link against the shareable library.

The API is quite simple:

� esnmp init() sets up a logical connection with the
master agent via the OPEN PDU, and returns a
socket descriptor;

� esnmp register() registers the subagent’s hierar-
chies of managed objects with the master agent, via
REG PDUs; and,

� esnmp poll() is called whenever data is pending
on the socket. Its main job is to handle all of the
Data PDUs that have arrived. It locates the correct
object-type in the table, checks access, and calls the
object-type’s method routine. For get-next and
get-bulk requests it traverses the locally-held ob-
jects, and so on. Data or error conditions returned by
the method routine are passed up as an eSNMP/DPI
RESPONSE and sent to the master agent.

This is the basis of the API (some minor calls, e.g.,
those dealing with trap generation, are omitted). The
subagent developer must check API return status codes
to discover possible loss of connection and restart the pro-
tocol with esnmp init(). The important point to make
is that it is the shareable library code, not the subagent
developer’s code, that acts as the eSNMP/DPI protocol
peer and communicates with the master agent. Such
a framework affords the subagent developer a way to
write method routines and export them into a managed
system, which is relatively low in both programming
complexity and runtime overhead. In our environment,
this is more appropriate than packet-multiplexing ap-
proaches, because it reduces both runtime overhead and
configuration issues, and does not reduce transparency
to management stations. Finally, it’s worth noting that
this type of framework is common to most commercially
available extensible SNMP products.

Design Tenets

These are the major requirements and design goals we
had for eSNMP:

� no changes are necessary in a management applica-
tion in order to access MIB variables instrumented
in subagents;

� subagents are developed completely independently,
and overlapping registration is permitted;

VOLUME 4, NUMBER 2 APRIL, 1996

The Simple Times 11

� subagents are completely decoupled (not started or
stopped in step with the master agent).

� subagents participate in eSNMP without impeding
other, potentially more important, functions (e.g.,,
on our platform the gated routing daemon also acts
as an eSNMP subagent);

� communication between a master agent and its sub-
agents occurs using local transport only (not TCP),
as we have no requirement for remote subagents,
and didn’t want to introduce new security problems;

� registration is completely dynamic (subagents can
add or subtract from the MIB hierarchy at will);

� the master agent is a repository of OIDs, NOT
object-types, and has no knowledge of any MIB
specification;

� only subagents know how to instantiate its objects,
and how to perform get, get-next, get-bulk, and
set operations on them;

� table sharing or instance-level registration must be
allowed;

� the master agent performs authentication of re-
ceived requests.

Connection Establishment/Maintenance
The master agent (snmpd) starts at system boot and
binds a socket to /var/esnmpd. When requested, the
runtime library code in the subagent sends an OPEN
PDU to this endpoint, establishing a logical connection:

+--------+------+--+
| OFFSET | SIZE | FIELD |
+--------+------+--+
... header ...
+========+======+==+
| 8 | 2 | timeout |
+--------+------+--+
| 10 | 2 | max-vbs = 0 |
+--------+------+--+
| 12 | var | subagent description (null-terminated) |
+--------+------+--+

The timeout field permits a subagent to indicate longer
than normal latency. The max-vbs field is unused. The
description identifies the subagent, and must be unique
among connected subagents (it is typically the fully
qualified path of the command executing the subagent).
There is no on-disk configuration of subagents. This
protocol exchange is the only way the master agent is
made aware of available subagents.

Once so connected, a subagent may send any of the
control PDUs, specifically it may register. Data requests
may be sent to a subagent whenever the dispatching
policy chooses any of its registered subtrees.

If the master agent receives a CLOSE packet from
a subagent, or detects from the underlying transport
that the subagent cannot receive data, the master agent
unregisters all of its subtrees and destroys the logical
connection.

The PING PDU is available for subagents to verify the
status of the master agent.

Registration

The registration packet looks like:
+--------+------+---+
| OFFSET | SIZE | FIELD |
+--------+------+---+
... header ...
+========+======+===+
| 8 | 2 | priority |
+--------+------+---+
| 10 | 2 | timeout |
+--------+------+---+
| 12 | 2 | view-sel |
+--------+------+---+
| 14 | 2 | bulk-sel |
+--------+------+---+
| 16 | var | subtree OID (null-terminated, length L) |
+--------+------+---+
| 16+L | var | sub-tree description (null-terminated) |
+--------+------+---+

The unit of registration is a single OID. By registering
an OID, the subagent indicates it will handle manage-
ment requests for objects within the subtree named by
that OID. A subagent may register any OID at any
priority, there is no policy to limit subagents. The OID
may represent an entire MIB, a MIB group, a table entry,
a partial instance, or a full instance. This is left entirely
to the discretion of the subagent developer.

The master agent handles overlapping registration
by splitting affected subtrees into smaller ranges that
are either exact duplicates, or no longer overlapping.
For instance, suppose component agent A registers
ip (1.3.6.1.2.1.4) and subsequently component agent B
registers ipNetToMediaTable (1.3.6.1.2.1.4.22). The
master agent splits the registry into 3 OID ranges:
(1.3.6.1.2.1.4 upto 1.3.6.1.2.1.4.22) subagent A
(1.3.6.1.2.1.4.22 upto 1.3.6.1.2.1.4.23) subagents A, B
(1.3.6.1.2.1.4.23 upto 1.3.6.1.2.1.5) subagent A

Here “upto” means “up to but not including”. If
component agent C now registers mib-2 (1.3.6.1.2.1) this
is split into OID ranges, resulting in:
(1.3.6.1.2.1 upto 1.3.6.1.2.1.4) subagent C
(1.3.6.1.2.1.4 upto 1.3.6.1.2.1.4.22) subagents A, C
(1.3.6.1.2.1.4.22 upto 1.3.6.1.2.1.4.23) subagents A, B, C
(1.3.6.1.2.1.4.23 upto 1.3.6.1.2.1.5) subagents A, C
(1.3.6.1.2.5 upto 1.3.6.1.2.2) subagent C

The policy we used for overlapping registrations is that
only 1 of them is active at a given time. That’s the one
with the highest priority, or, in the case of a tie, the
one most recently registered. Hence, in the example
above, assuming all subagents used the default priority,
subagent C would have the active ranges.

VOLUME 4, NUMBER 2 APRIL, 1996

The Simple Times 12

Subsequent UNREGISTER packets of course cause
inactive ranges to bubble up. If subagent C unreg-
istered mib-2, then B would own the active range
from 1.3.6.1.2.1.4.22 upto 1.3.6.1.2.1.4.23, and A would
own two ranges, 1.3.6.1.2.1.4 upto 1.3.6.1.2.1.4.22, and
1.3.6.1.2.1.4.23 upto 1.3.6.1.2.1.5.

We didn’t include any way for a subagent to be aware of
what ranges it is active for, mainly because we couldn’t
think of what subagent code could do about it. When
signaled, the master agent dumps the current registry
to a file. This enables local operator intervention when
a configuration is unsatisfactory.

Priorities are viewed as mechanism used by coop-
erating subagents, to provide precedence and backup
coordination without explicitly having to check for the
other’s existence.

Dispatching

When the master agent receives an SNMP request, each
varbind in the request is processed in turn according to
this general algorithm:

1. search the list of ACTIVE subtrees and find the
lexicographically first candidate;

2. associate this varbind with the subagent that regis-
tered this active subtree;

3. assign a timeout value with each packet that is
the maximum of all the timeout values that were
registered with the subtrees found in the first step;

4. encode a packet for each involved subagent, con-
taining all of its associated varbinds, and only those
varbinds;

5. send the packets and start a timer;

6. marshall the responses and if a subagent times out
mark those varbinds with genErr;

7. when processing get-next and get-bulk requests,
for all varbinds returned with endofMibView, start
over with the first step, but don’t start a new timer;
and,

8. when all varbinds have been returned with data,
returned in error, or timed out, formulate an appro-
priate SNMP response message and send it to the
requesting application.

Note that in the first step only the active subtree
(ranges) are searched. We chose this dispatching policy
so that between registration changes, a MIB variable’s
instrumentation cannot change.

Data Request/Response

Data request and response packets contain variable
length varbind sections:

.--.
| Layout of a varbind section |
+--------+------+--+
| OFFSET | SIZE | FIELD |
+--------+------+--+
...
+--------+------+--+
| L | 1 | varbind-flags |
+--------+------+--+
| L+1 | var | Starting OID (null-terminated string) |
+--------+------+--+
| L+M+2 | var | Ending OID (null-terminated string) |
+========+======+==+
The following only on SET and RESPONSE to GET, GETNEXT, and
GETBULK:
+--------+------+--+
| L+M+N+3| 1 | varbind variable type |
+--------+------+--+
| L+M+N+5| 2 | varbind data length (network-byte order) |
+--------+------+--+
| L+M+N+6| var | varbind data value |
+--------+------+--+
...
+--+
| Notes: L - current position in message |
| M - strlen(Starting OID), without terminator |
| N - strlen(Ending OID), without terminator |
‘--’

eSNMP supports both SNMPv1 and SNMPv2 SMI.
GET, GETNEXT, and GETBULK packets use the fol-
lowing format:

+--------+------+--+
| OFFSET | SIZE | FIELD |
+--------+------+--+
... header ...
+========+======+==+
| 8 | 4 | non-repeaters |
+--------+------+--+
| 12 | 4 | max-repetitions |
+--------+------+--+
| 16 | 4 | sec-len |
+--------+------+--+
| 20 | var | security data (octet sec-len bytes long) |
+--------+------+--+
| 20+M | var | varbinds, (see above for layout) |
+--------+------+--+
| |
| Notes: M is size of the security data which is value of |
| sec-len. |
‘--’

For these PDUs, the packet-flagsfield of the header
contains the SNMP version of the original request.
non-repeaters and max-repetitions are both 0 for
GET and GETNEXT packets. For GETBULK packets,
non-repeaters may be initially adjusted in light of
the varbinds sent to each agent, and max-repetitions
may be adjusted subsequently if endofMibView is
returned for any varbind and more GETBULK packets
are issued.

Currently the security field is always empty, although
there is a separate sec-len field in anticipation of
passing formatted data for security/naming scope infor-
mation.

VOLUME 4, NUMBER 2 APRIL, 1996

The Simple Times 13

For a GET packet, the starting OID is the requested
OID. It must be within the range of a subtree registered
by the subagent. For the GETNEXT and GETBULK
packets, the starting OID is either the requested OID (if
that falls within a registered subtree), or the OID of the
registered subtree that is lexi-next after the requested
OID. In this latter case the varbind-flags field is set
to indicate this.

The ending OID is empty for GET packets, and on
GETNEXT or GETBULK packets it is set to the end
(noninclusive) of the range of OIDs that this subagent
may respond for this varbind. (Due to overlaps and
splitting by the master agent, this search range does
not necessarily include the entire registered subtree;
however, the search range will NEVER span multiple
registered subtrees.)

When the subagent receives these requests, it searches
its registered subtrees for the one containing starting
OID, and then through a linkage to the object type
table finds the correct object type. It then calls the
indicated method routine, passing the value of starting
OID and an indication of the request type (along with
other information specific to the API).

If the varbinds-flag bit is set, the subagent modifies
this procedure slightly to perform a get operation,
regardless of the actual request. This is how possible
instance level registrations are handled, since the master
agent is unaware of what the registered OIDs mean. If
the GET processing fails, the subagent proceeds with
normal NEXT/BULK processing if that was the original
request. (Recall that the subagent developer is unaware
of this processing.)

The subagent processes all varbinds in the request
packet in this manner with the inclusion of a step that
checks the packet-flags field of the header for the
SNMP version of the request before calling any method
routine. Object types in the table with SNMPv2-only
syntax are ignored on SNMPv1 requests.

The data or error information for each varbind is
eSNMP/DPI encoded and a RESPONSE packet sent back
to the master agent. In these packets the starting OID
and associated data are the varbind to return to the
original requester. The varbinds in this response packet
are returned in the order they were sent in the request
packet.

Set Processing

eSNMP supports “as if simultaneous” set operations that
span subagents by using the SET, COMMIT, and UNDO
PDUs found in DPI. We added a CLEANUP PDU to
indicate the end of processing to allow resource release.
We also added an optimization for the typical case of only

a single subagent handling all the varbinds for the set
operation.

The SET, COMMIT, UNDO, and CLEANUP packets
use the same format as the GET* packets, the only
difference is that the varbinds sections contains data in
a SET packet.

The dispatch processing at the master agent is the
same as for GET* requests except that another bit in
the header’s packet-flags fields is set if all requested
varbinds are dispatched to the same subagent. In
this case, the subagent performs the SET, COMMIT,
potentially UNDO, and CLEANUP phases itself, and
returns a single RESPONSE. Otherwise, the master
agent must itself initiate the SET, COMMIT, optionally
the UNDO, and the CLEANUP phases by sending these
packets to each involved subagent.

Note that no check-consistency PDU needs to be issued
by the master agent, since the subagent receives ALL
varbinds destined for it in any request PDU. Consistency
checking (and other very useful aids to help subagent
developers perform set-related operations) then become
an API issue.

Responses

All eSNMP/DPI PDUs require a RESPONSE in return
except CLOSE, CLEANUP, and TRAP. All RESPONSE
packets are formatted as:
+--------+------+----------------------------------+
| OFFSET | SIZE | FIELD |
+--------+------+----------------------------------+
... header ...
+========+======+==================================+
| 8 | 4 | error-code |
+--------+------+----------------------------------+
| 12 | 4 | error-index |
+--------+------+----------------------------------+
| 16 | var | additional data (see discussion) |
+--------+------+----------------------------------+

Responses to requests use SNMPv2 compatible error
codes, and use the error-index field. The master agent
maps the code to SNMPv1 if required, and maps the error
index for all requested varbinds (not just those sent to
this subagent.) Successful response varbinds can contain
endofMibView, indicating the master agent needs to
roll-over to the next registered subtree. SNMPv2 support
in the master agent is being added at the time of this
writing.

Responses to the OPEN PDU contain a UNIX-style
timestamp, from which an API routine can calculate
sysUpTime-like timetick values. Responses to other
PDUs contain no additional data.

Appraisal With Respect to AgentX

eSNMP did not have the same functional requirements
as have emerged for AgentX. Some aspects of eSNMP are

VOLUME 4, NUMBER 2 APRIL, 1996

The Simple Times 14

discussed in this light.
eSNMP permits “table sharing by brute force”. Sub-

agent A can register ifIndex.1, ifDescr.1, etc., and
subagent B can register ifIndex.2, ifDescr.2, and so
on. It works, but AgentX needs to do better in 2 areas.
First, the registration syntax should probably allow
registering an entire row in one operation. Second, a
bigger problem is that of index collision in shared tables.
AgentX will need to provide mechanisms for subagents to
reserve indexes, so that subagents that share tables can
be truly independent, relying only on AgentX services (as
opposed to allocating indexes amongst themselves).

AgentX may contain explicit support for augmenting
tables, and may provide an index subscription service,
so subagents may learn about existing rows in tables of
interest, and be notified of changes. Since eSNMP does
not have special registration syntax for sharing tables,
and its dispatching policy limits each varbind to at most
1 subagent, it is impossible to create rows in shared
tables. This is unacceptable for AgentX. In contrast,
eSNMP exists on a UNIX platform in which network
interfaces are rationalized within the kernel, and the
operating system implements MIB support for MIB-II,
media-specific MIB modules, and Host Resources MIB.
This removed any need to share ifTable between
subagents, and so removed most of the impetus to
provide more explicit support of table sharing.

Finally, eSNMP does not carry context/naming scope
information, nor does it carry access control information
(community names, views). AgentX is likely to require
support for naming scope at least.

Conclusions

From the perspective of providing an agent that rep-
resents the entire managed node correctly and with
good performance, this design is a success. SNMP
request/response round trip times are increased by very
small values, compared to the monolithic agent, typically
less than .002 seconds on a 150MHz system. No changes
in snmpd’s configuration file or startup mechanism are
required, and the statistics in the system group are
correct!

From the perspective of providing an application
development environment, feedback has reenforced this
division of labor and general framework. Issues typically
involve the clarity of the documentation, particularly at
the method routine interface.

My personal belief is that subagent API/toolkit de-
velopment is best left to the vendors who specialize in
that area, and that differentiation in this area is not a
“Bad Thing”. The challenge before the AgentX working
group is to provide a standard subagent protocol that is

functionally equivalent to, though not binary compatible
with, currently deployed protocols. This would enable
the wide variety of independently-developed subagents
and master agents to interoperate, which is the ultimate
goal of our efforts.

I look forward to the day I can support AgentX in our
operating system!

An Alternative Perspective on
Agent Extensibility

Dave Bridgham
Epilogue Technology Corporation

It wasn’t long after the first SNMP agent was fielded
that someone asked if there was a way to have several
cooperating agents appear to be a single agent to the
management station. This person no doubt had several
things in a single box to manage with SNMP; things that
were separate development projects and so naturally
the development of the management code should also
be separate projects. So the question became:

“How do I get my management information into
the SNMP agent that another group provided?”

And from someone who was producing the SNMP agent:

“How do I allow all these separate projects
(separate processes, cards, devices, whatever)
get their management information to me?”

These are natural enough questions given the cir-
cumstances. Unfortunately they are not the correct
questions. The questions, as asked, specify the answer.
If you back up a little and look at the larger management
picture, rather than concentrating solely on the agent,
then you get a different question and possibly different
answers. The question we should be asking is:

“How do we get management information from
a variety of sources on a host, back to the
manager?”

This article looks at using SNMP itself as the means
for doing this communication. After all, moving manage-
ment information around is what SNMP was designed
to do. The technique is called SNMP proxy. For
proxy to extend agents requires no new protocol design
though a proxy registration MIB would be helpful.
It would allow for smoother, automatic management
station configuration and dynamic reconfiguration of
agents.

Many people I’ve talked to seem astonished even
to hear “proxy” and “agent extensibility” in the same

VOLUME 4, NUMBER 2 APRIL, 1996

The Simple Times 15

sentence. Apparently, they think the two are completely
unrelated. So let’s look at how something as simple as
proxy can help.

How Proxy Works

I assume most readers are familiar with SNMP proxy,
at least conceptually. But the term can be and has been
used in quite a few situations with SNMP so I’ll briefly
go over how I’m using it here. Also, I’ll hopefully clarify
a few other technical terms that I’ll be using throughout
the remainder of the article.

As I use the term in this article, proxy is essentially
what SNMPv2 classic meant by proxy. An SNMP
packet arrives at a well known service location (such
as UDP port 161) where it is received by the SNMP
proxy agent. This agent determines, from the community
string in the packet, that the packet is intended for a
different SNMP agent called the proxy target. The proxy
agent relays the SNMP packet, selecting a community
string for the proxy target along with a new request-ID.
The proxy agent also keeps a bit of state around,
referenced by the new request-ID, containing the original
requester’s addressing information, community string,
and request-ID so when the proxy target responds to the
proxy agent, it is able to relay the response back to the
original requester.

How Proxy Provides Agent Extensibility

Now let’s look at a few common situations that want an
extensible agent, and see how proxy technology could
be used. What we’ll find is that the agent end is just
proxy as I’ve already described above. All the work is
in the management station in putting the information
together and displaying it in a useful manner to the
human manager. That’s okay though. After all, that’s
what network management stations are supposed to do:
collect and organize network information, and display it
in a useful manner.

The most common use of extensible agents is the
splitting of MIB modules over several agents. Maybe
it’s different cards in a backplane, each with its own
processor. You don’t want to burn the MIB module into
a single processor, thereby limiting flexibility in adding
new MIB support as you come out with new cards for
your system. Maybe it’s different processes on a UNIX
system, written in some cases by different companies.

On the agent end, just run one agent as the proxy agent
and management stations talk to all the other agents in
the system through it. When the management station
first contacts the agents, it reads sysObjectID and
other similar information from each agent to discover

what that agent does. Remember, each proxy target is
an SNMP agent and has its own system group. Then,
when asked to show some aspect of the managed device,
the management station directs its requests to the right
proxy target by selecting the right community string and
retrieves information as usual with SNMP.

What if the information is spread across multiple proxy
targets? This isn’t likely to be a common situation, as any
information that’s likely to be grouped on the manager’s
screen is also likely to be grouped into a single proxy
target, but it’s easily handled. The manager simply
makes requests of each proxy target, collects all the
information available from the lot of them, and displays
the results in a unified manner.

Another common situation is the splitting of an SNMP
table across several agents, most often the interface
table, e.g., consider a backplane system where each
interface card wants to run its own entry in the interfaces
table and its own transmission group MIB module.
Each interface card runs its own proxy target with
those MIBs. Obviously, each interface needs to pick
values for ifIndex, and they’re very likely going to all
pick 1. That’s not a problem, since the management
station knows they’re different interfaces because it
talked to each proxy target separately to retrieve the
entire interface table. If the management station were
to simply display the values of ifIndex, it would be
rather confusing. So, instead of displaying the raw
information, a very simple transformation of the data
gives each interface a unique number, or even a name,
which is likely to be more palatable to most human users.

The final common example we’ll examine here is
multiple instances of the same MIB module. You have a
MIB module which instruments some part of your system
and one day you get a second instance of that part of
your system and so need a second instance of that MIB.
This may be a duplicate board plugged into a backplane,
or some instrumented UNIX application that was run
twice. With proxy, operation on the agent’s end is just like
any other extended agent: same MIB module, different
MIB module, it just doesn’t matter.

The management station has a couple of choices,
though. It could show the two instances of the same
MIB module as if there were two devices, or it could try to
merge the two into one, like merging multiple ifTables
into a single large ifTable. The choice comes down to
which provides the clearest picture for the human user,
and the choice can be left to the management station
rather than trying to pre-decide in the agent.

Since each of these proxy targets is an SNMP agent
in its own right, why bother with proxy at all? Why not
have the mangers just talk directly to the targets? There
are two main reasons: security and configuration.

VOLUME 4, NUMBER 2 APRIL, 1996

The Simple Times 16

Security

With the most recent SNMPv2 RFCs, SNMP lost its
security capabilities, but the security effort has not ended
and I think most of us in the network management
community believe that security of some sort for SNMP is
coming. The hardest part of security and, in particular,
it seems, network security, is not securing the data itself;
it’s the administration of it all. Proxies (and other agent
extension methods) let you put the security configuration
of an extended SNMP agent in the proxy agent only. This
can be an enormous reduction in security configuration,
as the proxy targets then only need security sufficient
to the environment they live in. In other words, within
an embedded system probably no additional security is
needed at all, and within a multiuser system, the system
itself has security capabilities suitable for an operating
system, which are much simpler to use and administer
than those needed across a network.

Even though it might be possible to talk directly to
proxy targets, rather than through the proxy agent,
concentration of security configuration makes proxy still
useful.

Configuration: Registration and Discovery

While SNMP proxy can provide agent extensibility with
no protocol extensions at all, it would be somewhat
unusable from a configuration standpoint. It’s just not
feasible to expect network managers to configure each
management station with access information (communi-
ties) for every proxy target as well as each proxy agent.
Also, if we have dynamic proxy targets then we’ll need
a standard way for proxy targets to register themselves
with a proxy agent.

One possibility is to design a proxy registration proto-
col, but a simpler solution is simply to write a registration
MIB module to be implemented by the proxy agent. To
register, proxy targets write themselves into the table
in the proxy agent. The information in this MIB need
only be contact information for the proxy target: the
community string to use and the transport type and
address. No information about the proxy target itself
is needed, because management stations can query the
proxy target directly for anything they want to know.
This MIB module also then provides the means whereby
a management station can discover all the proxy targets
it might want to talk to.

Actually, one additional piece of information would be
useful in this proxy registration MIB. Some proxy targets
are agent extensions, and others are just other agents
being accessed through a proxy. For a management
station which is trying to do a good job of displaying

an extended agent as a single device, it must distinguish
the two cases.

Another issue with this registration table is how it
gets garbage collected. If a proxy target goes away
willingly, it can obviously just remove itself from the
registration table. But what about otherwise? Since
a proxy agent needs to keep state around to eventually
relay the response, it also needs to timeout this state
in the event that the proxy target disappears. A few of
occurrences of this, and the proxy agent could mark this
proxy target in the proxy table as having a problem. At
that point the proxy agent could actively interrogate the
proxy target, or it could wait for a few more timeouts and
then remove the entry from its table.

Why You Haven’t Seen Proxy as the Agent Exten-
sibility Solution

Listen in on MIB design sessions and you find that MIB
designers do their work as if humans will be operating
on the MIB variables directly. The variables are crafted
to provide the highest level of semantic content possible.
They design MIBs as if the MIB were the user interface.
That’s because it is! Most management stations do
little more than provide a way for a human to interact
with a remote MIB module. The management station
provides the screen, keyboard, and mouse; the MIB
module provides the the user interface.

You could operate a proxy system this way, but it would
be painful. Agent extension through proxy assumes that
MIBs are a machine interface and that something, a
network management station, sits between this machine
interface and the human to makes things look nice, and
perhaps even does a little analysis on the data before
displaying it. Since this is not the case, agent vendors
have little choice but to continue, as best they can, to put
the user interface into their agents.

In Conclusion

Obviously, proxy technology provides a simple and clean
means to extend agents. Agent extensions through proxy
don’t require changing the SNMP protocol, re-designing
existing MIBs with agent extensibility in mind, or a
grand design effort to produce a new, standard protocol.

If the only part of the system you control is an SNMP
agent, then you have to do whatever it is you’re trying
to do within that agent. Stepping back and looking at a
larger network management system lets you ask,

“Where’s the best place to aggregate information
from a variety of sources?”

You may get a different answer than when you restrict
your vision to just the agent.

VOLUME 4, NUMBER 2 APRIL, 1996

The Simple Times 17

The SNMP Framework
Keith McCloghrie

Cisco Systems

In the last issue, this column examined some of the
changes to SNMPv2 incorporated in RFCs 1901-1908.
Seven of these documents were published as approved
Draft Standards, with the other one (RFC 1901) pub-
lished as an experimental RFC. Specifically, in the
last issue, we examined the changes to the SNMPv2c
administrative framework, and to the SNMPv2 protocol
and transport mappings. In this issue, we’ll detail the
changes to the rules for defining MIB modules.

The rules for defining MIB modules are generally
referred to as the Structure of Management Information
(the SMI). There are three documents which specify
these rules:

� the SMI itself (RFC 1902);

� the Textual Conventions (RFC 1903); and,

� the Conformance Statements (RFC 1904).

Changes to the SMI

RFC 1902 defines a number of changes from RFC 1442:

� Three changes to the allowed data types:
NsapAddress is removed since its usage turned
out to be unnecessary; UInteger32 is replaced by
Unsigned32, and BIT STRING is replaced by the
BITS construct. Both of the latter two changes
promote better backward-compatibility with SNM-
Pv1, since Unsigned32 is encoded on the wire in
an identical manner to the Gauge32 data type,
and the BITS construct is encoded on the wire as
an OCTET STRING. Thus, a SNMPv2 to SNMPv1
MIB conversion utility can produce compatible (but
semantically-poorer) definitions for Unsigned32
and BITS in an SNMPv1 MIB format. These new
data type definitions should not cause problems with
existing SNMPv2 MIBs, since the usage of RFC
1442’s new data types was discouraged while the
SNMPv2 SMI was still at Proposed Standard status.

� For object descriptor names and enumerated labels:
the rules on disallowing hyphens are tightened, and
the length of these descriptors are recommended to
be 32 characters or less.

� Usage of the IMPLIED keyword is restricted so that
it can only be used for the last object in an INDEX
clause, in order to avoid ambiguity.

� accessible-for-notify is defined as a new
keyword for the ACCESS clause of the OBJECT-
TYPE macro; the meaning of this keyword is
nearly identical to not-accessible except that
it is allowed to be referenced by the OBJECTS
clause of a NOTIFICATION-TYPE macro, whereas
a not-accessible object is not.

� zeroDotZero is defined using an OBJECT IDEN-
TITY macro as the value 0.0.

� The deprecatedkeyword is allowed in the STATUS
clause of an OBJECT-IDENTITY macro.

� read-only auxiliary objects are allowed when con-
verting a SNMPv1 MIB to an SNMPv2 MIB.

� The next to last sub-identifier of any newly-defined
notifications is required to be zero in order to be
compatible with the rules for proxy conversion of
SNMPv1 traps into SNMPv2 traps.

RFC 1902 also expands and clarifies the text in a number
of places, including:

� An Appendix is added to document existing practice
in the usage of ASN.1 rules for sub-typing, including
allowing the sub-typing of Integer32.

� The maximum length of an OCTET STRING is limit-
ed to 65535 octets.

� The meaning of deprecated is clarified as a defini-
tion which is obsolete, but may still be supported for
backward-compatibility.

� The REVISION clause of the MODULE-IDENTITY
macro is clarified as being required for the initial
revision.

� An Appendix is added to explain the UTC time
format (used in the LAST-UPDATED and other
clauses).

Changes to the Textual Conventions

RFC 1903 defines a number of changes from RFC 1443:

� Usage of the new BITS construct is allowed in new
Textual Conventions.

� The behavior of a TestAndIncr variable at agent
re-initialization is specified; the variable must either
be incremented from the value it held prior to the
re-initialization, or must be set to a unpredictable
value.

VOLUME 4, NUMBER 2 APRIL, 1996

The Simple Times 18

� The InstancePointer TC is obsoleted and re-
placed with two new TCs: VariablePointer, for
pointing to an object instance; and RowPointer, for
pointing to a conceptual row.

� For the RowStatus TC, the potential error condi-
tions are clarified when a value is written to a col-
umn other than the status column of a non-existent
row; and the definition of a specific RowStatus
object in a MIB module is allowed to override the
age-out timer for non-active rows.

� Three new TCs are added: StorageType, TDomain
and TAddress (all of these were previously defined
in the now historic RFC 1447).

� The DISPLAY-HINTS clause is extended to define
the implied position of a decimal point when render-
ing a decimal value.

� The meaning of various NVT-ASCII sequences (e.g.,
“CR LF”) in a DisplayString is clarified.

Changes to the Conformance Statements

RFC 1904 defines a number of changes from RFC 1444:

� The NOTIFICATION-GROUP macro is added to
allow MODULE-COMPLIANCE statements to refer
to groups of notifications, and to allow AGENT-
CAPABILITIES statements to define variations on
implementing notifications. The definition and us-
age of the NOTIFICATION-GROUP macro is exactly
corresponds to the OBJECT-GROUP macro.

� Every object in a MIB module (other than those
defined as not-accessible) is required to be con-
tained in at least one object group. This allows a MIB
compiler to flag the common error of inadvertently
forgetting to include objects in groups.

� The accessible-for-notify keyword is allowed
to be present in the STATUS clause of the
two relevant conformance macros: MODULE-
COMPLIANCE and AGENT-CAPABILITIES.

� The deprecated keyword is allowed in the STATUS
clause of the OBJECT-GROUP macro.

� The need to import objects is clarified: when
a MIB module is IMPORTed by a MODULE-
COMPLIANCE statement or by an AGENT-
CAPABILITIES statement, then that IMPORTS
clause implicitly imports all object definitions from
the MIB module; thus, any objects referenced from
that MIB module do not themselves need to be
explicitly IMPORTed.

� Usage of the value of an AGENT-CAPABILITIES
macro is clarified as being intended for use as the
value of sysORID, but not of sysObjectID.

Note that the above changes and clarifications in all
three documents were designed such that MIB modules
written according to the recommended usage of RFCs
1442-1444 are all still valid under the rules defined by
RFCs 1902-1904.

Frequently Asked Questions
Kaj Tesink

Bell Communications Research

Some questions never go away. Here are three questions
on the Trunk MIBs (RFC 1406,RFC 1407,RFC 1595),
which are currently being revised.

Q: SYNTAX, Gauge

Why do the performance counters in the Trunk MIBs
have the SYNTAX Gauge?
A: Response:
Performance counts in the Trunk MIBs are kept in 15
minute intervals. That is, you keep on counting for 15
minutes, store it, and start a new interval. Looks like a
Counter? Well, thats what we thought when we started
out (see RFC 1232 and RFC 1233). But we were wrong.
A Counter is defined as monotonically increasing (and
then wraps). Something that is reset every 15 minutes
doesn’t qualify as such and therefore the correct SYNTAX
should be Gauge.

Q: Discontinuities, Interval Counts

What happens when an interval count for an interface
becomes unavailable, for example, because of restart of
the agent? If an implementation supports the objects
but an instance is unavailable then how should an agent
respond? Should the agent:

� return noSuch*;

� return noError along with a value of zero; or,

� return genErr?

A: Response:
When object instances are not available for whatever
reason, they are simply unavailable. As such, the agent
should respond with noSuch*. Returning 0 would be
misleading because the instance is unavailable and the
value 0 may be wrong.

Nevertheless, this interval issue has been debated
many times. For example, what happens with the table

VOLUME 4, NUMBER 2 APRIL, 1996

The Simple Times 19

totaling all intervals? Unfortunately, there is only so
much you can do to convey correct information, and the
law of diminishing returns is looming. The problem may
be partly solved by mandating when for calculating the
totals the value 0 should be used for gaps in the table;
and, by defining a separate object indicating potentially
missing intervals.

Q: Persistent Data, Cumulative Data

Why is so much history kept in the Trunk MIB interval
tables, and why is there a separate table totaling
everything up? Doesn’t the SNMP principle of simple
agents apply? Shouldn’t this be a manager task?
A: Response:
Here is an example where traditional telecommunica-
tions collides with traditional data communications. Tra-
ditional SNMP relies on continuous counters relying on
calculating the difference between subsequent samples.
Traditional practice in telecommunications is to keep
performance information in 15 minute intervals. Notice
that CSU/DSUs do the same thing. When the trunk
MIBs were defined they did nothing else than mib’ifying
what was there anyway.

Of course, this practice is redundant and therefore
should be avoided. But is it wrong? In the interests of
simple agents this practice should be avoided as general
policy. But an argument a large network is not helped by
managers having to retrieve large numbers of counters
continuously, and is better off by storing some history
in the agents (for example, this capability could be
made configurable allowing probing in particular areas
of interest in a network).

Industry Comment
Marshall T. Rose

Dover Beach Consulting

Welcome to the year’s second issue of The Simple Times.
The good news is that I’ve received only positive

comments on the previous issue. One reader exclaimed:

“More technical content per square of paper
than I’ve seen in a long time...”

Similarly, the unofficial index of IETF MIB modules
http://www.simple-times.org/pub/simple-times/html/,
has also proven popular, with many asking why all RFCs
couldn’t be published in HTML.

Special Issues

In the last issue, I noted that the editorial policy of
The Simple Times was changed to solicit more outside

contributions instead of featured columns. (The old
policy had one technical article per issue, whilst the new
policy requires three.)

Reader feedback was positive on this change, and, as
luck would have it, a major topic in the SNMP communi-
ty, agent extensibility, is now reaching a consensus point.
So, this is a special issue of The Simple Times focusing
on that special topic, with coverage of five articles!

Historically, I have long opposed a standards-based
effort to agent extensibility. I felt that the issues
are too implementation-specific to favor standardization;
further, I felt that an imperfect standardized resolution
of these issues would diminish the correct behavior of
an SNMP implementation. Over time however, the
issues have become clearly understood and there is
now sufficient experience for a standards-based effort
to proceed and succeed. As such, I am pleased that
the major contributors to the IETF effort on agent
extensibility were able to contribute to The Simple
Times.

I think it fair to speculate that we will have another
special issue later this year, dealing with another major
topic as it approaches consensus. I’ll leave that to the
reader to guess which topic that might be. (Hint: it
doesn’t, thankfully, deal with security!) Of course, The
Simple Times still needs your help: please consider
contributing a technical article to the community! The
publication schedule is quarterly, so that’s plenty of time
for you to do some serious writing.

Standards Summary

SNMPv1 Framework

Consult the latest version of Internet Official Protocol
Standards. As of this writing, the latest version is RFC
1920.
Full Standards:

� RFC 1155 - Structure of Management Information
(SMI);

� RFC 1157 - Simple Network Management Protocol
(SNMP); and,

� RFC 1212 - Concise MIB definitions.

Proposed Standards:

� RFC 1418 - SNMP over OSI;

� RFC 1419 - SNMP over AppleTalk; and,

� RFC 1420 - SNMP over IPX.

VOLUME 4, NUMBER 2 APRIL, 1996

The Simple Times 20

SNMPv2 Framework

Draft Standards:

� RFC 1902 - SMI for SNMPv2;

� RFC 1903 - Textual Conventions for SNMPv2;

� RFC 1904 - Conformance Statements for SNMPv2;

� RFC 1905 - Protocol Operations for SNMPv2;

� RFC 1906 - Transport Mappings for SNMPv2;

� RFC 1907 - MIB for SNMPv2; and,

� RFC 1908 - Coexistence between SNMPv1 and
SNMPv2.

Experimental:

� RFC 1901 - Introduction to Community-based
SNMPv2;

� RFC 1909 - An Administrative Infrastructure for
SNMPv2; and,

� RFC 1910 - User-based Security Model for SNMPv2.

MIB Modules

An unofficial index of IETF MIB modules is available.
http://www.simple-times.org/pub/simple-times/html/

Full Standards:

� RFC 1213 - Management Information Base (MIB-II);
and,

� RFC 1643 - Ether-Like Interface Type (SNMPv1).

Draft Standards:

� RFC 1493 - Bridge MIB;

� RFC 1516 - IEEE 802.3 Repeater MIB;

� RFC 1559 - DECnet phase IV MIB;

� RFC 1657 - BGP version 4 MIB;

� RFC 1658 - Character Device MIB;

� RFC 1659 - RS-232 Interface Type MIB;

� RFC 1660 - Parallel Printer Interface Type MIB;

� RFC 1694 - SMDS Interface Protocol (SIP) Interface
Type MIB;

� RFC 1724 - RIP version 2 MIB;

� RFC 1742 - AppleTalk MIB;

� RFC 1748 - IEEE 802.5 Token Ring Interface Type
MIB;

� RFC 1757 - Remote Network Monitoring MIB; and,

� RFC 1850 - OSPF version 2 MIB.

Proposed Standards:

� RFC 1285 - FDDI Interface Type (SMT 6.2) MIB;

� RFC 1315 - Frame Relay DTE Interface Type MIB;

� RFC 1354 - IP Forwarding Table MIB;

� RFC 1381 - X.25 LAPB MIB;

� RFC 1382 - X.25 PLP MIB;

� RFC 1406 - DS1/E1 Interface Type MIB;

� RFC 1407 - DS3/E3 Interface Type MIB;

� RFC 1414 - Identification MIB;

� RFC 1461 - Multiprotocol Interconnect over X.25
MIB;

� RFC 1471 - PPP Link Control Protocol (LCP) MIB;

� RFC 1472 - PPP Security Protocols MIB;

� RFC 1473 - PPP IP Network Control Protocol MIB;

� RFC 1474 - PPP Bridge Network Control Protocol
MIB;

� RFC 1512 - FDDI Interface Type (SMT 7.3) MIB;

� RFC 1513 - Token Ring Extensions to RMON MIB;

� RFC 1514 - Host Resources MIB;

� RFC 1515 - IEEE 802.3 Medium Attachment Unit
(MAU) MIB;

� RFC 1525 - Source Routing Bridge MIB;

� RFC 1565 - Network Services Monitoring MIB;

� RFC 1566 - Mail Monitoring MIB;

� RFC 1567 - X.500 Directory Monitoring MIB;

� RFC 1573 - Evolution of the Interfaces Group of
MIB-II;

� RFC 1595 - SONET/SDH Interface Type MIB;

� RFC 1604 - Frame Relay Service MIB;

� RFC 1611 - DNS Server MIB;

� RFC 1612 - DNS Resolver MIB;

VOLUME 4, NUMBER 2 APRIL, 1996

The Simple Times 21

� RFC 1628 - Uninterruptible Power Supply MIB;

� RFC 1650 - Ether-Like Interface Type (SNMPv2);

� RFC 1666 - SNA NAU MIB;

� RFC 1695 - ATM MIB;

� RFC 1696 - Modem MIB;

� RFC 1697 - Relational Database Management Sys-
tem MIB;

� RFC 1747 - SNA DLC MIB;

� RFC 1749 - 802.5 Station Source Routing MIB; and,

� RFC 1759 - Printer MIB.

Experimental:

� RFC 1187 - Bulk table retrieval with the SNMP;

� RFC 1224 - Techniques for managing asynchronous-
ly generated alerts;

� RFC 1238 - CLNS MIB; and,

� RFC 1592 - SNMP Distributed Program Interface
(SNMP-DPI); and,

� RFC 1792 - TCP/IPX Connection MIB Specification.

Informational:

� RFC 1215 - A convention for defining traps for use
with the SNMP;

� RFC 1270 - SNMP communication services;

� RFC 1303 - A convention for describing SNMP-based
agents;

� RFC 1321 - MD5 message-digest algorithm;

� RFC 1470 - A network management tool catalog;
and,

� RFC 1503 - Automating Administration in SNMPv2
Managers.

Historic:

� RFC 1156 - Management Information Base (MIB-I)
(see RFC 1213);

� RFC 1161 - SNMP over OSI (see RFC 1418);

� RFC 1227 - SNMP MUX protocol and MIB;

� RFC 1228 - SNMP Distributed Program Interface
(SNMP-DPI) (see RFC 1592);

� RFC 1229 - Extensions to the generic-interface MIB
(see RFC 1573);

� RFC 1230 - IEEE 802.4 Token Bus Interface Type
MIB;

� RFC 1231 - IEEE 802.5 Token Ring Interface Type
MIB (see RFC 1748);

� RFC 1232 - DS1 Interface Type MIB (see RFC 1406);

� RFC 1233 - DS3 Interface Type MIB (see RFC 1407);

� RFC 1239 - Reassignment of experimental MIBs to
standard MIBs;

� RFC 1243 - AppleTalk MIB (see RFC 1742);

� RFC 1248 - OSPF version 2 MIB (see RFC 1252);

� RFC 1252 - OSPF version 2 MIB (see RFC 1853);

� RFC 1253 - OSPF version 2 MIB (see RFC 1850);

� RFC 1269 - BGP version 3 MIB (see RFC 1657);

� RFC 1271 - Remote LAN Monitoring MIB (see RFC
1757);

� RFC 1283 - SNMP over OSI (see RFC 1418);

� RFC 1284 - Ether-Like Interface Type MIB (see RFC
1398);

� RFC 1286 - Bridge MIB (see RFC 1493 and RFC
1525);

� RFC 1289 - DECnet phase IV MIB (see RFC 1559);

� RFC 1298 - SNMP over IPX (see RFC 1420);

� RFC 1304 - SMDS Interface Protocol (SIP) Interface
Type MIB (see RFC 1694);

� RFC 1316 - Character Device MIB (see RFC 1658);

� RFC 1317 - RS-232 Interface Type MIB (see RFC
1659);

� RFC 1318 - Parallel Printer Interface Type MIB (see
RFC 1660);

� RFC 1351 - SNMP Administrative Model;

� RFC 1352 - SNMP Security Protocols;

� RFC 1353 - SNMP Party MIB;

� RFC 1368 - IEEE 802.3 Repeater MIB (see RFC
1516);

� RFC 1389 - RIPv2 MIB (see RFC 1724);

VOLUME 4, NUMBER 2 APRIL, 1996

The Simple Times 22

� RFC 1398 - Ether-Like Interface Type MIB (see RFC
1643);

� RFC 1441 - Introduction to SNMPv2 (see RFC 1901);

� RFC 1442 - SMI for SNMPv2 (see RFC 1902);

� RFC 1443 - Textual Conventions for SNMPv2 (see
RFC 1903);

� RFC 1444 - Conformance Statements for SNMPv2
(see RFC 1904);

� RFC 1445 - Administrative Model for SNMPv2;

� RFC 1446 - Security Protocols for SNMPv2;

� RFC 1447 - Party MIB for SNMPv2;

� RFC 1448 - Protocol Operations for SNMPv2 (see
RFC 1905);

� RFC 1449 - Transport Mappings for SNMPv2 (see
RFC 1906);

� RFC 1450 - MIB for SNMPv2 (see RFC 1907);

� RFC 1451 - Manager-to-Manager MIB;

� RFC 1452 - Coexistence between SNMPv1 and
SNMPv2 (see RFC 1908);

� RFC 1596 - Frame Relay Service MIB (see RFC
1604);

� RFC 1623 - Ether-Like Interface Type MIB (see RFC
1643); and,

� RFC 1665 - SNA NAU MIB (see RFC 1666).

Subscribing to SNMP-related Working Groups

� 100VG-AnyLAN MIB Working Group
<vgmib-request@hprnd.rose.hp.com>

� Application MIB Working Group
<applmib-request@emi-summit.com>

� AToM MIB Working Group
<atommib-request@thumper.bellcore.com>

� BGP Working Group
<iwg-request@ans.net>

� Bridge MIB Working Group
<bridge-mib-request@pa.dec.com>

� Character MIB Working Group
<char-mib-request@decwrl.dec.com>

� Data Link Switching MIB Working Group
<aiw-dlsw-mib@networking.raleigh.ibm.com>

� DECnet Phase IV MIB Working Group
<phiv-mib-request@jove.pa.dec.com>

� Entity MIB Working Group
<entmib-request@cisco.com>

� FDDI MIB Working Group
<fddi-mib-request@cs.utk.edu>

� Frame Relay Service MIB Working Group
<frftc-request@nsco.network.com>

� Host Resources MIB Working Group
<hostmib-request@andrew.cmu.edu>

� IEEE 802.3 Hub MIB Working Group
<hubmib-request@hprnd.rose.hp.com>

� IDR Working Group
<bgp@ans.edu>

� Interfaces MIB Working Group
<if-mib-request@dtl.labs.tek.com>

� IP over AppleTalk Working Group
<apple-ip-request@cayman.com>

� IPLPDN Working Group
<iplpdn-request@nri.reston.va.us>

� IPv6 MIB Working Group
<ip6mib-request@research.ftp.com>

� ISDN MIB Working Group
<isdn-mib-request@combinet.com>

� IS-IS for IP Internets Working Group
<isis-request@merit.edu>

� Mail and Directory Management Working Group
<ietf-madman-request@innosoft.com>

� Modem Management Working Group
<modemmgt-request@telebit.com>

� NOCtools Working Group
<noctools-request@merit.edu>

� OSPF IGP Working Group
<ospf-request@gated.cornell.edu>

� PPP Extensions Working Group
<ietf-ppp-request@merit.edu>

� RIP Working Group
<ietf-rip-request@xylogics.com>

VOLUME 4, NUMBER 2 APRIL, 1996

The Simple Times 23

� Remote Network Monitoring Working Group
<rmonmib-request@cisco.com>

� Routing over Large Clouds Working Group
<rolc-request@nexen.com>

� SNA DLC Services MIB Working Group
<snadlcmib-request@cisco.com>

� SNA NAU Services MIB Working Group
<snanaumib-request@cisco.com>

� SNMP Agent Extensibility Working Group
<agentx-request@fv.com>

� SNMPv2 Working Group
<snmpv2-request@tis.com>

� TCP Client Identity Protocol
<ident-request@nri.reston.va.us>

� DS1/DS3 MIB Working Group
<trunk-mib-request@cisco.com>

� Uninterruptible Power Supply Working Group
<ups-mib-request@cs.utk.edu>

� X.25 MIB Working Group
<x25mib-request@dg-rtp.dg.com>

Internet Resources

Automated Services

Automated services are available in the Internet, pro-
vided “as is” with no express or implied warranty. Each
service accepts a MIB module in the body of a message.
MIB module checking:

� Emissary <mib-checker@epilogue.com>

� mosy <mosy@simple-times.org>

MIB module conversion:

� convert SNMPv2 module to SNMPv1
<mib-v2tov1@simple-times.org>

� convert MIB module to HTML
<mib-2html@simple-times.org>

Source Implementations

Source implementations are available in the Internet,
provided under various no-fee licensing terms.
Agents:

� Beholder: an RMON agent for UNIX
ftp://dnpap.et.tudelft.nl/pub/btng/

� CMU SNMP: an SNMPv2u agent for UNIX
ftp://ftp.cisco.com/ftp/kzm/cmusnmp.tar.gz

� UT-snmpV2: an SNMPv2 agent for SPARCs
http://snmp.cs.utwente.nl/

� WILMA: an SNMP agent for UNIX
http://www.ldv.e-technik.tu-muenchen.de/dist/INDEX.html

Compilers:

� mosy: a MIB compiler
ftp://ftp.cisco.com/ftp/kzm/snmptcl.tar.gz

� SMIC: a MIB compiler
<dperkins@scruznet.com>

� snacc: an ASN.1 compiler
ftp://ftp.cs.ubc.ca/pub/local/src/snacc/

Platforms:

� NOCOL: a network monitoring package for UNIX
ftp://ftp.navya.com/pub/vikas/

� Scotty: a Tcl-based environment for management
applications
http://www.cs.tu-bs.de/ibr/projects/nm/

� snmptcl: a Tcl-based environment for management
applications
ftp://ftp.cisco.com/ftp/kzm/snmptcl.tar.gz

� SNMPY: a Python-based environment for manage-
ment applications
http://www.rdt.monash.edu.au/\˜{}anthony/snmpy/

� Tricklet: a Perl-based environment for management
applications
ftp://dnpap.et.tudelft.nl/pub/btng/

� WILMA: an X-based monitoring package for UNIX
http://www.ldv.e-technik.tu-muenchen.de/dist/INDEX.html

Other Resources

� IETF Home Page
http://www.ietf.cnri.reston.va.us/

� SNMP Testing FAQ
http://www.iwl.com/faq.html

� User-based Security Model (USEC) Resources
http://www.simple-times.org/pub/simple-times/usec/

VOLUME 4, NUMBER 2 APRIL, 1996

The Simple Times 24

Announcements

SNMP Test Summit III

InterWorking Labs announces the SNMP Test Summit
III from June 3-7, 1996 at the Winsock Labs in San
Jose, California (US). Engineers who wish to find and
fix bugs in their SNMPv2 (including c, usec, and star)
implementations should attend.

For more information: +1 408 459 9817.

Publication Information

Featured Columnists
Keith McCloghrie Cisco Systems
Marshall T. Rose Dover Beach Consulting

Kaj Tesink Bell Communications Research

Contact Information
E-mail st-editorial@simple-times.org

ISSN 1060–6068

Submissions

The Simple Times solicits high-quality articles of tech-
nology and comment. Technical articles are refereed to
ensure that the content is marketing-free. By definition,
commentaries reflect opinion and, as such, are reviewed
only to the extent required to ensure commonly-accepted
publication norms.

The Simple Times also solicits terse announcements
of products and services, publications, and events. These
contributions are reviewed only to the extent required to
ensure commonly-accepted publication norms.

Submissions are accepted only via electronic mail, and
must be formatted in HTML version1.0. Each submis-
sion must include the author’s full name, title, affiliation,
postal and electronic mail addresses, telephone, and
fax numbers. Note that by initiating this process, the
submitting party agrees to place the contribution into
the public domain.

Subscriptions

The Simple Times is available in three editions: HTML,
ASCII, and PostScript. For more information, send a
message to

st-subscriptions@simple-times.org

with a Subject: line of

help

Back issues are available via either the Web or FTP, i.e.,

http://www.simple-times.org
ftp://ftp.simple-times.org

look under /pub/simple-times/issues/. In addi-
tion, The Simple Times has several hard copy distri-
bution outlets. Contact your favorite SNMP vendor and
see if they carry it.

VOLUME 4, NUMBER 2 APRIL, 1996

