
The Simple TimesTM

THE QUARTERLY NEWSLETTER OF SNMP TECHNOLOGY, COMMENT, AND EVENTSSM

VOLUME 4, NUMBER 1 JANUARY, 1996

The Simple Times is an openly-available publica-
tion devoted to the promotion of the Simple Network
Management Protocol. In each issue, The Simple
Times presents technical articles and featured columns,
along with a standards summary and a list of Internet
resources. In addition, some issues contain summaries
of recent publications and upcoming events. For infor-
mation on submissions, see page 16.

In this Issue:

Applications, Tools, and Operations
The User-based Security Model : : : : : : : : : : 1
Optimizing Key Distribution : : : : : : : : : : : : 6
Notes on Implementing SNMPv2u : : : : : : : : 8

Featured Columns
The SNMP Framework : : : : : : : : : : : : : : : 9
Frequently Asked Questions : : : : : : : : : : : : 11
Industry Comment : : : : : : : : : : : : : : : : : 11

Miscellany
Standards Summary : : : : : : : : : : : : : : : : 12
Internet Resources : : : : : : : : : : : : : : : : : 15

Publication Information 16

The Simple Times is openly-available. You are free
to copy, distribute, or cite its contents; however, any
use must credit both the contributor and The Simple
Times. (Note that any trademarks appearing herein are
the property of their respective owners.) Further, this
publication is distributed on an “as is” basis, without
warranty. Neither the publisher nor any contributor
shall have any liability to any person or entity with
respect to any liability, loss, or damage caused or alleged
to be caused, directly or indirectly, by the information
contained in The Simple Times.

The Simple Times is available via both electronic
mail and hard copy. For information on subscriptions,
see page 16.

The User-based Security Model
Glenn W. Waters

Bell-Northern Research Ltd.

The User-based Security Model for SNMPv2 (USEC)
provides an administrative framework through which
multiple levels of security for SNMPv2 protocol inter-
actions can be defined. It achieves this with a minimum
of overhead on the management and agent entities.

This article gives an overview of the concepts and
security features of the USEC model. The USEC model
also defines mechanisms to handle proxy agents that will
be covered in a future article in The Simple Times.

The user, a well known paradigm for computer users, is
the basis of all protocol interactions in the USEC model.
Conceptually, the user model is very analogous to the
user-id/password that is used to login to a computer. The
user, identified by a userName (the “user-id”) is used
to identify who is accessing information at an agent.
A key (the “password”) is used to ensure that the user
is authentic. Optionally, a second key may be used to
ensure privacy. The user-id/password model also grants
a user-id a set of privileges. Similarly, the USEC model
associates a set of access rights with an user.

Implicit in the user-id/password model is that some
entity (machine or human) has knowledge of the user-id
and password that may be used to login to a particular
computer. The USEC model maintains that paradigm in
that the shared knowledge of a user must be known to
both the entity that wishes to access an SNMPv2 agent
and to the agent itself.

Goals and Constraints

The specific goals of the USEC model with respect to
security, are:

� to provide verification that each received SNMPv2
message has not been modified during its trans-
mission such that an unauthorized management
operation might result;

� to provide verification of the identity on whose
behalf the SNMPv2 message claims to have been
generated;

The Simple Times 2

� to provide verification of timeliness of received
messages; and,

� optionally, to ensure that the contents of SNMPv2
messages are protected from disclosure from unau-
thorized sources.

The USEC model specifically does not attempt to protect
against denial of service attacks and against traffic
analysis.

The goals and non-goals defined here are, in practice,
the same as those defined for the now-historical SNMPv2
party model specified in RFC 1446.

Definition of a User

A user has the following attributes:

� userName, an octet string that represents the iden-
tity of the user;

� authProtocol, an indication of whether messages
sent on behalf of this user can be authenticated, and
if so, the type of authentication protocol which is
used;

� authPrivateKey, if messages sent on the behalf of
this user can be authenticated, the private authen-
tication key for use with the authentication protocol;

� privProtocol, an indication of whether message
sent on behalf of this user can be protected from
disclosure, and if so, the type of privacy protocol
which is used; and,

� privPrivateKey, if messages sent on behalf of this
user can be protected from disclosure, the private
privacy key for use with the privacy protocol.

Those attributes must be known to both the sender and
the receiver of a communication.

The USEC model defines the use of MD5 as the
authentication protocol and the use of DES as the privacy
protocol. The keys associated with both the MD5 and
DES protocols are 128-bit values. To provide an interface
that is more user-friendly than 128-bit keys, USEC
model specifies the use of a password to key algorithm
as was originally defined by Steve Waldbusser as part of
the SNMPv2 party model.

Other Definitions

Agents that support the USEC model must maintain
three objects:

� agentID, which is a 12 octet identifier that is unique
among all agents in an administrative domain;

� agentBoots, which is a count of the number of
times the agent has rebooted/re-initialized since the
agentID was last configured (each time the agent
is re-initialized the value of agentBoots must be
incremented by one); and,

� agentTime, which is the number of seconds since
agentBoots was last incremented.

Quality of Service (qoS) is defined as the level of
security that is afforded a particular message. The
defined qoS levels are:

� no authentication (noAuth) and no privacy (noPriv);

� with authentication (auth) and no privacy (noPriv);
and,

� with authentication (auth) and with privacy (priv).

A message’s qoS is included within the message’s header,
and qoS is also used to indicate messages that may result
in a report PDU being generated.

Time Window is a value that specifies the window of
time in which an authenticated message generated on
behalf of a user is valid. The same value of the Time
Window, 150 seconds, is used for all users.

Local Configuration Datastore (LCD) is a locally de-
fined (conceptual) datastore that holds a set of informa-
tion about (locally known) SNMPv2 users and other asso-
ciated information (e.g., access control). Each SNMPv2
entity maintains an LCD. An LCD may potentially be
required to hold information about multiple SNMPv2
agent entities (e.g., in a manager that communicates
with multiple SNMPv2 agent entities), and as such the
agentID should be used to distinguish the information
associated with a particular agent entity in the LCD.

Message Format

The format of a message using the USEC model is the
same as the SNMPv1 message specified in RFC 1157,
except that:

� the version number is changed to 2; and,

� the data component contains either a PDU or an
OCTET STRING containing an encrypted PDU.

In addition, the SNMPv1 community string component
in the message, termed the parameters component in
the USEC model, contains a set of administrative
information for the message.

VOLUME 4, NUMBER 1 JANUARY, 1996

The Simple Times 3

An SNMPv2 message is an ASN.1 value with the
following syntax:

Message ::=
SEQUENCE {

version
INTEGER { v2u(2) },

parameters
OCTET STRING,

data
CHOICE {

plaintext PDUs,
encrypted OCTET STRING

}
}

The first octet in the parameters component is the model,
where the value 1 refers to that USEC model. In
that case, the parameters field contains several values
encoded in network-byte order:

� qoS, the message’s quality-of-service;

� agentID, the unique identifier for the agent;

� agentBoots/agentTime, the message’s timestamp;

� maxSize, the maximum message size which the
sender of this message can receive using the same
transport domain as used for this message;

� userLen/userName, the user on whose behalf this
message is sent;

� authLen/authDigest, the authentication digest;
and,

� contextSelector, the context selector, which in combi-
nation with agentID identifies the SNMPv2 context
containing the management information referenced
by the SNMPv2 message.

The plaintext field contains an SNMPv2 PDU as defined
in RFC 1905, whilst the encrypted field contains the
encrypted form of an SNMPv2 PDU.

Contexts and Context Selectors

An SNMPv2 context is a collection of management
information accessible by an SNMPv2 agent. An item
of management information may exist in more than
one context. An SNMPv2 agent potentially has access
to many contexts. Each SNMPv2 message contains
a context selector which unambiguously identifies an

SNMPv2 context accessible by the SNMPv2 agent whose
agentID is contained in the message.

A context is termed a local SNMPv2 context if it is
realized by an SNMPv2 entity that uses locally-defined
mechanisms to access the management information
identified by the SNMPv2 context.

The term remote SNMPv2 context is used at an
SNMPv2 manager to indicate a SNMPv2 context which
is not realized by the local SNMPv2 entity (i.e., the
local SNMPv2 entity uses neither locally-defined mech-
anisms, nor acts as a proxy SNMPv2 agent to access
the management information identified by the SNMPv2
context). The USEC model also defines proxy SNMPv2
contexts.

The combination of an agentID value and a context
selector provides for a unique identification of a context
within an administrative domain.

Error Reporting

While processing a message, an SNMPv2 agent entity
may determine that the contents of the message header is
unacceptable according to one of the requirements of the
USEC model. Rather than just discarding the received
message, and forcing the management entity to await
a timeout period to detect that an error condition has
occurred, the agent may generate a message containing
SNMPv2’s new report PDU.

When the agent entity detects an error (e.g., the
received message has a bad authentication digest) and
the qoS indicates that a report may be generated,
then after incrementing the appropriate error statistic,
a report PDU message is generated. The report is
generated with the same user and context as the received
message and is sent to the same transport address as
the received message. All error reports, except those
generated due to a not-in-time-window error condition,
are unauthenticated (i.e., qoS is noAuth/noPriv). To
allow a management entity to authentically synchronize
its time with the agent’s time, those error reports
generated due to a not-in-time-window error condition
are authenticated (i.e., qoS is Auth/noPriv).

Upon receiving a report PDU a management entity
may perform any error recovery actions that are ap-
propriate, such as performing automatic error recovery
(i.e.: clock synchronization) or notifying the management
station operator of the error condition.

The report flag in the qoS may only be set if the
message contains a get, get-next, get-bulk, or set
operation. The report flag should never be set for a
message that contains a response, inform, trap, or
report operation. Furthermore, a reportPDU is never
sent by an SNMPv2 entity acting in a manager role.

VOLUME 4, NUMBER 1 JANUARY, 1996

The Simple Times 4

Message Authenticity

To ensure message integrity and to verify the identity
of the user on whose behalf a message is sent, the MD5
message digest algorithm described in RFC 1321 is used
as follows:

� the user’s 128-bit secret key, authPrivateKey, known
to both the sender of the message and the receiver
of the message is inserted into and appended to the
SNMPv2 message.

� using the MD5 message digest algorithm, a 128-
bit digest (checksum) is computed over the entire
message and appended secret. The computed digest
is inserted into the message, replacing the secret
value, and the resulting message is transmitted to
the recipient.

� the recipient of the message replaces the 128-bit
digest with the secret value, saving the digest for
later use, and appends the secret value to the
received message. Using the MD5 message digest
algorithm, a 128-bit digest is computed over the
entire message and the appended secret. The
computed digest value is compared to the received
digest value and if they are equal then the message’s
integrity is intact and its identity of origin is deemed
to be authentic.

Any message that is not authentic is discarded, possibly
causing a report PDU message to be generated.

In comparison, the party model did not append the 128-
bit key to the message before the digest was computed.
This usage of MD5 is called Keyed-MD5, and, according
to security experts, it cryptographically strengthens the
algorithm. Furthermore, a user’s keys are localized for
each agent. This gives superior security properties, as
outlined in the next article.

Timeliness of Delivery

Each SNMPv2 agent is the authoritative source of two
time values, agentBoots and agentTime, which taken
together provide an indication of time at that agent.
When a manager wishes to authentically communicate
with the agent, it must include its notion of both of these
values in the message. On receipt of a message at the
agent, the agentBoots and agentTime values are checked
to ensure that they are within an acceptable time window
(150 seconds) of the agent’s current time.

When an agent generates a message, its current values
of agentBoots and agentTime are always included in the
message. When an authentic message is received by the
manager, the agentBoots and agentTime values in the

message are checked to ensure that they are within an
acceptable time window of the manager’s local values for
the agent’s time.

Any message that is not within the acceptable time
window is discarded, possibly causing a report PDU
message to be generated.

Replay Protection

As discussed previously, each SNMPv2 agent must main-
tain three objects, agentID, agentBoots, and agentTime.

The agentID value is used to protect against attacks in
which a message from a manager is replayed to different
agent and/or messages from one agent are replayed as if
from a different agent. Since agentID is unique within
an administrative domain and the agentID is included in
the portion of a message that is authenticated, the same
message from/to different agents will contain a different
MD5 digest, even if the same authPrivateKey is used.
This prevents messages from being cross-played.

To protect against replay, authentic messages are
checked to ensure that they are timely. A management
entity will accept a received message as timely:

� if the received value of agentBoots is greater than
the local notion of agentBoots; or

� if the received value of agentBoots is equal to
the local notion of agentBoots and the received
agentTime is not more than 150 seconds less than
the local notion of agentTime.

Simply stated, the timely message is one that contains
an indication of time that may be greater than the local
notion of the agent’s time and is no more than 150
seconds older than the local notion of the agent’s time.

An agent entity will accept a message as timely if
the message contains a value of agentBoots equal to
the agent’s current value of agentBoots and the message
contains a value of agentTime that is within 150 seconds
of the agent’s current agentTime. The agent checks
that the received time is strictly within the 150 second
window to protect against a manager irresponsibly using
an indication of time that is at some arbitrary point in the
future, thus allowing captured messages to be replayed
until they are no longer timely.

In order for the mechanisms described here to reliably
protect against reply attacks, the indication of time at an
agent must be ever increasing once the agent is installed
and running. Through the use of agentBoots, a non-
volatile clock which ticks at all times (even when the
agent is powered down) is not required at the agent.
The agentBoots value is simply incremented when the
agent re-initializes and the agent’s indication of time has

VOLUME 4, NUMBER 1 JANUARY, 1996

The Simple Times 5

then advanced, thus providing protection against replay
attacks.

Both agentID and agentBoots must be stored in non-
volatile storage. If the agent cannot determine the values
of agentID or agentBoots then the value of agentBoots
should be set to its maximal value (4294967295).

When an agent is first installed, it sets its local values
of agentBoots and agentTime to zero. If agentTime ever
reaches its maximum value (2147483647) then agent-
Boots is incremented, as if the agent had rebooted, and
agentTime is reset to zero and starts incrementing again.
If agentBoots reaches it maximum value (4294967295)
manual intervention is required and the agent must be
physically visited and re-configured, either with a new
agentID value, or with new secret values for all users
known to that agent. Note that it would take 136 years
of the agent rebooting once a second for this condition to
ever arise!

Privacy

To ensure that messages are protected from disclosure
from unauthorized sources, the USEC model employs
the Data Encryption Standard (DES) in the Cipher Block
Chaining (CBC) mode of operation. A 128-bit privacy key,
known by both the sender and receiver of a message, is
used to encrypt the PDU portion of the message prior to
sending. Upon receiving an encrypted message the same
privacy key is required to successfully decrypt the PDU
portion of the message.

Time Synchronization

Time synchronization is required by a management
entity in order to proceed with authentic communications
with an agent entity (including being able to check
the authenticity of a received trap). A management
entity has achieved time synchronization with an agent
entity when the management entity has obtained local
values of agentBoots and agentTime from the agent that
are within the agent’s time window. In addition to
keeping a local version of agentBoots and agentTime,
a manager must also keep one other local variable,
latestReceivedAgentTime. This value records the highest
value of agentTime that was received by the manager
from the agent and is used to eliminate the possibility
of replaying messages that would prevent the manager’s
notion of the agentTime from advancing.

In order for a manager to become synchronized with
an agent, the manager should set its local values of
the agent’s clocks (agentBoots, agentTime, and latestRe-
ceivedAgentTime) to zero. A subsequent authenticated
message sent to the agent will cause an authentic

error report to be returned to the manager. The error
report, indicating that the manager sent a message
that was not in the agent’s time window, contains
authentic values of the agent’s clocks that may be used to
update the manager’s local notion of the agent’s clocks.
The manager may then continue with timely authentic
communications, and, in particular, may re-send the
authentic message that caused time synchronization to
occur.

The manager and agent each have a clock that advance
independently. For a manager to remain synchronized
with the agent, its notion of the agent’s time must
remain current. If the manager’s clock does not advance
at the same rate as the agent’s clock, then over time
the manager’s notion of the agent’s time could vary
enough that time synchronization will be lost. To prevent
this condition, the manager’s notion of the agent’s time
is updated (i.e., synchronized) whenever a message is
received that is authentic, timely, and more recent than
any other message received from that agent. Thus, a
manager that maintains communication with an agent
should never lose time synchronization with that agent.

Discovery

In order to communicate with an SNMPv2 agent that
supports the USEC model, a management entity must
know the value of the agent’s agentID value. The
agentID may be learned by sending a noAuth/noPriv
retrieval communication to the agent with the agentID
set to all zeros (binary). Since the context, identified
by the combination of the agentID and contextSelector,
is invalid due to an all-zero agentID, the agent’s re-
sponse to this message will be a unknown-context error
report PDU that contains the agent’s agentID value
in the parameters field. If authentic communications
are required, then the time synchronization procedure
should then be used.

Access Policy

For a particular SNMPv2 context to which a user has
access using a particular qoS, that user’s access rights
are given by a list of authorized operations (e.g., get,
set, and so on), and for a local context, a read-view
and a write-view. The read-view is the set of managed
object instances that may be accessed by the user during
a retrieval or notification operation. The write-view is
the set of managed object instances that may be accessed
by the user when performing a set operation.

VOLUME 4, NUMBER 1 JANUARY, 1996

The Simple Times 6

USEC MIB module

The USEC model defines a MIB module that contains
objects for basic agent instrumentation (e.g., agentID,
agentBoots, and so on) and for USEC statistics.

Informs, Managers, and Agents

One of the new features in SNMPv2 is the inform PDU,
which is used to transmit management information from
one “application” to another. Each of these applications
act in a manager role for the purposes of sending and
receiving the inform; however, the sending application
must have access to information in a MIB view of an
entity acting in an agent role. That implies that an
application that sends an inform:

� is a dual-role entity, namely, it acts as both an agent
entity and a management entity;

� must have access to the agent’s MIB view; and,

� must have access to parts of the agent’s instrumen-
tation, specifically, to the agent’s authoritative time
indicators.

The concept here builds upon the fact that every
(network) component should have an agent which holds
its management instrumentation, and this is just as true
for management applications as for any other network
component. Such management instrumentation is, of
course, accessible through an agent. Thus, every appli-
cation should have an agent which holds its management
instrumentation, and therefore every application has an
associated agent with a MIB view which is used for the
purpose of that application sending an inform.

With this definition, some may ask why not consider
an inform as an “acknowledged trap”. The answer is
related to two of the age-old SGMP/SNMP philosophies:

� keeping the “cost-of-entry” requirements on an agent
to a minimum so that even the simplest of devices
can afford to implement an agent; and,

� controlling the amount of SNMP traffic generated in
a network according to the needs of the management
applications, i.e., only a subset of the devices in the
network will generate unsolicited SNMP messages
upon the occurrence of some network error. (Note
that it is this philosophy which has always been the
impetus behind SNMP’s paradigm of trap-directed
polling.)

It is consistent with these philosophies for certain
high-end devices, which have previously been considered
to be agents (e.g., RMON probes or routers), to now be

considered to be dual-role entities capable of sending
informs. What would be problematic is if every device
in the network were considered to be a dual-role entity.

The USEC model requires that an application that
wishes to authenticate received informs must synchro-
nize its time with the sending application’s associated
agent. (This requirement is the same as is required to
authenticate received traps.)

Past, Present, and Future

Considerable work has been done on USEC since its
initial publication in Spring of last year. In particular,
while the security of USEC has been strengthened, (e.g.,
through the use of localized-keys and keyed-MD5), many
of the procedures have been streamlined (e.g., clock
synchronization).

As of this writing there are four independently-
developed and interoperable implementations of the
USEC model, two commercial and two openly-available.
Given the straight-forward design of USEC, we antici-
pate other implementations to be available in 2Q96.

The core of the USEC model is quite stable; however,
in early 1996 we will begin development of a remote
configuration MIB module for USEC. Rather than using
the design team approach enjoyed by the USEC model,
an open mailing list <usec-mib-request@fv.com> is now
established for this purpose.

Optimizing Key Distribution
Uri Blumenthal, N. C. Hien, Bert Wijnen

IBM T.J. Watson Research Center

This article describes a key management approach
for networks in which several manager entities are
communicating securely with a large number of agent
entities. In this case, it is possible to make a reasonable
compromise to cut down on the number of keys and their
storage requirement, with little impact on security.

In the context of SNMP’s User-based Security Model,
the approach described is exploited by using localized
keys.

Introduction

First, we define the class of problems this approach can
offer a solution to. Then we outline the approach, using
one application as an example. Then we evaluate the
advantages and drawbacks.

The whole idea stems from the observation that, on
one hand, it is highly desirable to minimize the number
of keys or passwords in use when humans are involved;
while on the other hand, it is very desirable for every

VOLUME 4, NUMBER 1 JANUARY, 1996

The Simple Times 7

machine to have its own key, which it shares with as few
correspondents as possible.

A reasonable compromise seems to be to allow a user
to have one key, and localize it for every machine he
wants to access, via a cryptographically-strong one-way
function.

Such compromise is most needed in SNMP’s User-
based Security Model, where a few network management
stations talk to a great many agents, often on behalf
of human users. Thus, SNMP will be used as an
example during description of this approach, although
the approach is not limited to SNMP.

Conditions of Applicability

Consider a network whose management topology is
logically viewed as a star, or several overlapping stars.
One or more superior entities need to communicate with
a large number of subordinate entities (endpoints), but
these endpoints don’t correspond with each other. It is
necessary that these endpoints have some kind of unique
names or other publicly known identification marks. For
example, in the context of Simple Network Management
Protocol, there are large numbers of managed devices
(endpoints) containing agents, and one or more man-
agement stations communicating with these devices on
behalf of network operators and administrators.

A second consideration is to avoid direct key negotia-
tion, and instead initialize cryptographic secrets via an
off-line process. Key management subsequently occurs
based on actions taken by the superior entities. For
example, in the case of SNMP, cryptograhic secrets
for agents are generated when an entity is initially
configured, and management stations subsequently or-
chestrate key updates.

Finally, consider an environment in which the superior
entities are relatively few and relatively secure. Prefer-
ably, these entities only need to retain key information
when they are active (i.e., performing management tasks
on behalf of an operator or administrator). However, this
is not a requirement.

A Compromise

Some protocols allow the administrator to choose be-
tween security and usability. One can have:

� a usable configuration with a few keys, which is
prone to security failures; or,

� a very secure configuration which no human will be
able to use due to the requirement to have a different
key for every agent; or,

� anything in between.

However, it is worth nothing that when dealing with
large networks, having just a few different keys doesn’t
solve the problem, and having an individual key for every
agent, alas, is not feasible.

Regardless, considering the possible insecurity of
Agent installations and their possibly vast number, it
is desirable to ensure that if one (or more) agents are
compromised, then communications between the NMS
and other agents aren’t also compromised. Clearly, if
each agent had its own key, it would solve the problem,
but the price is too high to have each NMS carrying all
the keys for all the Agents that it may need to talk
to. While it wouldn’t be unreasonable to require this
from a computer, such burden is too heavy for human
operators. On the other hand, if each operator had just
one key which is stored on every agent for which access is
authorized, then when one agent falls, the whole network
security is compromised.

So to achieve both security and convenience, it would
be ideal for an operator to have a single key, and every
agent to have its own unique key that is somehow derived
from that operator’s key.

An obvious way to achieve such compromise is to apply
a one-way function to the user’s key. Such a one-way
function needs to be both unique to each agent, and be
straightforward and simple at the same time, so a NMS
has no problem constructing it as necessary.

Let’s say we have a user A with key Ka, and an agent
S with an identifier Is. Then a localized key Ka,s
for this user and agent combination can be derived via
Ka,s = Fs(Ka), where Fs(x) is a well-known one-way
function unique for agent S.

Let us define Fs(x) = F(x,Is), where F(x,y) is
based on any well-known cryptographically secure hash-
function, such as MD5 (RFC 1321) or SHS. If we choose
MD5, as it is already used in SNMP, then:

F(x,y) = MD5(x || y || x)

So when a user A needs to access an agent S, it enters his
key Ka and Agent’s identification Is. Based on this, the
NMS derives the key:

Ka,s = MD5(Ka || Is || Ka)

and uses this key for all the communications done on
behalf of this user to this agent.

When a key for a user A is to be changed, the NMS
gets the new key, localizes it using the above formula for
every relevant agent, and sends the new keys for each
agent via appropriate channels.

Evaluation and Conclusions

SNMP requires that each agent stores the keys for
every user it needs to communicate with. By using our

VOLUME 4, NUMBER 1 JANUARY, 1996

The Simple Times 8

approach, the keys stored in any agent can’t be derived
from keys in possession of any other agent, neither can
the user’s key be derived from any agent’s key, or several
of them. This protects the network when one agent (or
more) is compromised. There is no attack known to us,
that can break the localization scheme.

Of course, any user needs only know their own key,
rather than having to know the key for each agent that
may be communicated with. As such, we have achieved
the goal of each operator having but a single key.

This article shows a convenient way to distribute and
manage keys for some special network configurations,
one example of which is SNMP. We showed, that our ap-
proach indeed achieves its goal to allow each subordinate
entity to have its own key, which is not in any tractable
relation with any other subordinate key, nor it is feasible
to determine the generating key from subordinate’s keys.

Notes on Implementing SNMPv2u
Shawn A. Routhier

Epilogue Technology Corporation

This article describes some experience gained from
writing an implementation of SNMPv2u (USEC). The
code base utilized for this implementation was Epilogue’s
product Envoy. The base version included support for
SNMPv1 and SNMPv2c with some code being copied
from an older version that supported the party model
from the original SNMPv2.

Envoy is a source code product we supply to other
companies as a toolkit; our customers then add more
code to produce their own network manager or agent.
While Envoy includes a manager and agent as sample
programs, it is the toolkit that is the product. This fact
means that most of my effort is spent on the core engine
code, and that the manager is a simple command-line
program used primarily for demonstration purposes.

For this project I upgraded the core code to understand
the SNMPv2u protocol as well as updating the sample
agent and manager to use the core to communicate using
SNMPv2u. I implemented most of the base protocol,
including the authentication services and report fea-
tures, but did not implement either the privacy or proxy
services. I deferred implementing the proxy service due
to time constraints. The privacy service is a bigger
problem, as it uses the DES encryption algorithm which
makes it difficult to export (from the US) in source form.
(Unfortunately there probably isn’t an appropriately
strong algorithm that is exportable.)

Engine Additions And Modifications

Because SNMPv2u basically adds a layer for authen-
tication and security, most of my code didn’t require
modification. The required changes were limited to the
routines that encode and decode packets and the routine
that constructs the packet structure to be encoded.
I also needed to add MD5 code for computing the
authentication digest. However, none of the core agent
or manager functions were changed. That is, there
were no change to either agent-specific functions such as
processing PDUs, determining what objects to process,
calling the method routines, and merging the results
back into the response pdu; nor to manager-specific
functions, such as determining which objects to retrieve,
and displaying the response.

The packet constructor routine needs to validate some
new arguments such as the user-name and the quality-
of-service option. It then gathers other information such
as the user’s authentication key and inserts all of this
into the packet structure under construction.

The encode routine now needs to determine if the
authentication routine needs to be invoked, and, if so,
to insert the digest into the packet properly.

The decode routine required more work than the other
two routines. While its basic function remains the
same, the routine must now handle the authentication
step (including timestamp manipulation) as well as
processing the report pdu.

Finally, I needed to add the MD5 digest support for
the encode and decode routines to use. I started with
digest code from an older version of Envoy but needed to
update it to allow for appending the key to the end of the
packet in an efficient fashion. (Unlike earlier versions
of various approaches to SNMP security, SNMPv2u uses
Keyed-MD5.)

Other Modifications and Additions

In addition to the protocol engine changes, I also needed
to add routines to manipulate the new database and to
modify the manager to use the new packet constructor
routine. Due to the limited nature of my manager this
had almost no impact. A more sophisticated manager
may require more changes to take advantage of some
new features such as the report PDU and auto-discovery.

The databases that are needed are for users, contexts,
agents and access rights. For a simple agent these can be
small and simple (or even non-existent) while a manager
will require larger and more complicated tables. For
the current project, I choose to use the same relatively
simple routines for both my manager and agent sides. In
a production environment I would likely use two different
schemes.

VOLUME 4, NUMBER 1 JANUARY, 1996

The Simple Times 9

Additional Comments

Two significant complaints with the original SNMPv2
were: its potentially large amount of non-volatile mem-
ory requirements, and the difficulty in dealing with
remote clocks. SNMPv2u simplifies both these issues
by having a single clock per agent and by using report
PDUs along with a small MIB module to allow a manager
to gain the required timestamp information. As a
consequence, it is considerably easier to implement time
synchronization under SNMPv2u than under the party
mechanism.

Another issue that surfaced during the discussions
about the orignal SNMPv2 was the difficulty in changing
objects associated with one of the parties being used to
authenticate a packet. SNMPv2u neatly sidesteps this
issue by mandating that an agent cache the necessary
values during the decode step. This simplifies both the
manager and the agent.

Under SNMPv2u, key generation procedures are
slightly more involved, but are still straightforward to
implement. (Unlike earlier versions of various approach-
es to SNMP security, SNMPv2u uses localized keys.)
I imagine that many agents will pre-compute localized
keys and save them, while managers may attempt to
save space by maintaining a user with a single key and
computing a localized key on the fly either per packet or,
more likely, per “management session”.

Some Conclusions

Implementing the SNMPv2u protocol is neither difficult
or complex, the complexity being shifted away from the
protocol engine towards a supporting database.

I believe that any successful authentication and se-
curity protocol will need to allow simple agents to avoid
most of the complexity of the database code. The protocol
should also require minimal resources from such simple
agents.

Although I found that implementing SNMPv2u was
easier than implementing the original SNMPv2, I don’t
think that the original SNMPv2 died due to implemen-
tation difficulty. Rather, I feel it died because one had to
deploy all the required party information. SNMPv2u is
simpler in this respect, requiring less authentication and
security information to be deployed. I believe this will be
another requirement for any successful authentication
and security protocol.

The SNMP Framework
Keith McCloghrie

Cisco Systems, Inc.

Last autumn, the IETF’s SNMPv2 Working Group
produced a set of updated SNMPv2 documents based
on its work during the preceeding 12 months. Despite
the controversy surrounding the last few months of
that effort, the good news is that major portions of the
previous documents (RFCs 1441 through 1452) proved
to be “good technology”, and the new documents have
only minor improvements in those areas. The bad news
is that the other portions of those RFCs, specifically,
the administrative framework, the security, and the
Manager-to-Manager MIB proved to be unworkable in
deployment.

The controversy in the working group was concerned
with selecting replacement technology for the admin-
istrative and security framework, and as a result, the
working group could not reach agreement between sev-
eral competing proposals. As a last-minute compromise,
the working group agreed to a fallback position of using
SNMPv1’s administrative framework to replace the
unworkable portions so as to allow the “good technology”
to progress on the standardization track.

This combination of using the SNMPv1 adminis-
trative framework with the remainder of SNMPv2 is
called Community-based SNMPv2 or SNMPv2c. At
the last IETF meeting in Dallas, the IESG approved
the progression of all but the Introduction document
to Draft Standard status, with the Introduction being
declared an experimental (sic) protocol. All of these
approved documents are now published as RFCs (see the
Standards Summary).

This and succeeding articles of this column will
examine the changes to SNMPv2 as represented by those
approved documents. In this article, we look at the SN-
MPv2c administrative framework as well as the changes
to the SNMPv2 protocol and transport mappings. Future
articles will examine the changes to the rules for defining
MIBs (the SMI, Textual Conventions, and Conformance
documents), to the SNMPv2 MIB, and to the co-existence
between SNMPv1 and SNMPv2.

The primary problem with the original SNMPv2 ad-
ministrative framework was the use of SNMPv2 parties.
RFC 1445 specified that an SNMPv2 message was sent
from one party to another party, thereby allowing the
security to be based on which parties were communicat-
ing. The source and destination parties were identified
in the SNMPv2 message wrapper. Inside the wrapper
was the SNMPv2 PDU specifying the operation (get,
get-next, get-bulk, set and so on) to be performed.
The SNMPv2c compromise solution is possible because

VOLUME 4, NUMBER 1 JANUARY, 1996

The Simple Times 10

SNMPv1 also has a message wrapper which contains a
version number, a community string, and an (SNMPv1)
PDU.

Introducing SNMPv2c

The Introduction to Community-Based SNMPv2 doc-
ument specifies that the SNMPv1 message wrapper
is used instead of RFC 1445’s party-based wrapper,
but unlike SNMPv1 (RFC 1157), inside it contains an
SNMPv2 PDU. To avoid the potential of having the
contained SNMPv2 PDU cause an SNMPv1 system to
become confused, SNMPv2c uses a new version number
(1 instead of SNMPv1’s 0). Two other minor changes are
also specified:

� SNMPv2c allows the source transport address (e.g.,
the IP address and UDP port number) of Response
messages to be any address belonging to an agent;
and,

� the error status value of authenticationError in
a SNMPv2 PDU, use of which was specified by RFC
1445, is not used in SNMPv2c.

As a result of this change, SNMPv2 parties are no longer
used, nor defined, in SNMPv2c.

Thus, not only does RFC 1445, the administrative
framework become obsolete, but so do: RFC 1446,
the security specification, which relied heavily on the
definition of parties; RFC 1447, the Party MIB, which
allowed configuration of parties; and, RFC 1451, the
Manager-to-Manager MIB, which also relied on the
definition of parties. All of these RFCs are being declared
as having historic status. It is expected that some IETF
working group will produce a replacement for the the
Manager-to-Manager MIB at some future date.

Protocol Changes

The Protocol Operations document (RFC 1905) defines
SNMPv2’s PDU. There are only a few changes, mostly
concerned with details, in the updated protocol docu-
ment. Specifically:

� All references to values defined by the adminis-
trative framework are removed. This includes:
references to a party’s maximum message size which
is replaced by the maximum message size supported
by the appropriate SNMPv2 implementation over
the relevant transport protocol; access control for
the sending of traps, which is now a local matter;
and, the destinations to which inform PDUs are to
be sent, which now must be specified by the sending
application.

� The addition of a report PDU. This new PDU was
devised by the working group as a way to speed-up
the handling of errors relating to the SNMPv2
message wrapper. With SNMPv2c, no usage is
made of the Report PDU. However, this PDU’s
definition is retained in the protocol document so
that potential future alternate SNMPv2 adminis-
trative frameworks can make use of the faster error
recovery it can provide.

� The error checking performed by an agent on receiv-
ing a set PDU is slightly re-ordered. Experience
indicated that the majority of implementations per-
form their initial checking in variable-independent
code followed by checking performed by code depen-
dent on the variable being accessed. The re-ordering
supports such implementations by performing all
the variable-independent checking first.

� The requirement to increment the relevant error
counter (defined in the SNMPv2 MIB) on the ap-
propriate occasions is added.

� The processing of a get-bulk PDU is allowed
to terminate “early” (i.e., before the completion of
the specified number of max-repetitions) on one
additional condition. This extra condition is if
the processing of the get-bulk PDU is taking a
significantly greater amount of time than that taken
by a normal request.

� The definition of SNMPv2’s noSuchInstance and
noSuchObject exception conditions is clarified.

Transport Changes

The Transport Mappings document (RFC 1906) specifies
how SNMPv2 messages are sent over various transport
protocols, and also includes the restrictions on the use
of ASN.1’s Basic Encoding Rules (BER) for encoding
SNMPv2 messages. This document has even fewer
changes:

� The discussion of proxy between SNMPv2 parties
and SNMPv1 communities is deleted.

� All assignments of OBJECT IDENTIFIER values,
e.g., an assignment to a particular transport map-
ping, are now defined using SNMPv2’s OBJECT-
IDENTITY macro.

� The BER encoding of the new BITS construct is
explained.

In the next issue of The Simple Times, we’ll look
at changes to SNMP’s language for describing managed
objects.

VOLUME 4, NUMBER 1 JANUARY, 1996

The Simple Times 11

Frequently Asked Questions
Kaj Tesink

Bell Communications Research

Welcome to the FAQ column. This column features
interesting questions, sometimes posted on one of the
mailing list, or sometimes found on the grapevine.

Here are two questions from the SNMP list that
pointed out some fine thinking, and show that there is
sometimes more behind a specification than meets the
eye.

Q: MIN-ACCESS, RowStatus

I have a question regarding the SNMPv2c Conformance
Statements document (RFC 1904).

In section 5.4.3.3, “Mapping of the MIN-ACCESS
clause”, it indicates that the MIN-ACCESS clause may
not be used in a MODULE-COMPLIANCE macro for
objects where the level of access is “fixed according to
their syntax definition”. The example given is an object
with the syntax of the textual convention of RowStatus.

Now, I have defined a conceptual table within my MIB
that is mandatory and it includes a RowStatus columnar
object. The intention of the table is to allow managers
to add/delete rows, but I fully expect some agent im-
plementations to provide a limited version of this table
that does not allow addition/deletion. I expected that the
MODULE-COMPLIANCE macro would allow this, but it
appears that it doesn’t.

Is this really the intention, or am I missing something?
A: Keith McCloghrie responds:
In the text you quote, the examples given are:

1. conceptual tables and rows since no value other than
not-accessible is legal;

2. Counter32 and Counter64 for which read-only is the
maximal level of access; and,

3. “certain types of textual conventions”, giving Row-
Status as an example.

This text is in RFC 1444 and is unchanged in RFC 1904.
But, note that RFC 1573, RFC 1604, RFC 1698, and

RFC 1747 all define RowStatus objects for which they
have conformance statements with a MIN-ACCESS.

Bottom-line: I think RowStatus needs to be deleted as
an example in Section 5.4.3.3.

Q: SetRequest, wrongEncoding

Hi everyone,
In reviewing the latest draft of the proto document, I

noticed the following parenthetical statement in Step (5)
of first phase SetRequest processing (pp. 22-23):

“Otherwise, if the variable binding’s value field
contains an ASN.1 encoding which is incon-
sistent with that field’s ASN.1 tag, then the
value of the Response-PDU’s error-status field
is set to ‘wrongEncoding’, and the value of
its error-index field is set to the index of the
failed variable binding. (Note that not all
implementation strategies will generate this
error.)”

Can someone please explain the reasoning behind
that parenthetical caveat? What cases is it supposed
to cover...what alternative action (error-code) would one
of these implementation strategies report? Or is it
intended that an implementation strategy might just
silently fix-up the encoding error if it can?

A: Brian O’Keefe responds:
Some implementations ASN.1 decode the entire mes-

sage before processing it at all. In this case, the im-
plementation will have aborted processing the message
long before this step in the proto ops. The resulting
behavior would be similar to the case where an encoding
error is detected in the message header (i.e., during
authentication phase).

Industry Comment
Marshall T. Rose

Dover Beach Consulting, Inc.

The Simple Times is back!
After 18 months of wretched inactivity, we’re back in

publication. You’ll notice two changes: a new format and
more content.

A New Format

The The Simple Times is available in an HTML
edition. When publication began in early 1992, Internet
hypertext had yet to emerge. So, publication was limited
to an ASCII and a PostScript edition. Considering that
a substantial portion of The Simple Times content is
resource pointers, supporting HTML provides a powerful
combination. Of course, The Simple Times has its own
hypertext index
http://www.simple-times.org/pub/simple-times/issues/.

For another example, check out the unofficial index
http://www.simple-times.org/pub/simple-times/html/ of
IETF MIB modules. There you will find every MIB
module developed by the IETF, in full hypertext format.
Reading a MIB module and need to contact the module’s
editor or look up an object defined in another module?
Just click.

VOLUME 4, NUMBER 1 JANUARY, 1996

The Simple Times 12

It’s a pity we didn’t have Internet hypertext in the
early days, because the Standards Summary really
benefits from it! Speaking of which, here are three other
hypertext resources of interest to the SNMP community:

� IETF Home Page
http://www.ietf.cnri.reston.va.us/

� SNMP Testing FAQ
http://www.iwl.com/faq.html

� User-based Security Model (USEC) Resources
http://www.simple-times.org/pub/simple-times/usec/

More Content

The editorial composition of The Simple Times has
changed. This time we’re placing more emphasis on
outside contributions instead of featured columns.

Previously, only one outside technical article per issue
was solicited. The new editorial policy allows each issue
to have up to one technical article in each of the following
areas:

� Applications, in which the SNMP framework is used
for networking management;

� Tools, such as development environments, testing
suites, and so on; and,

� Operations, describing how to provision the service,
deploy the products, and manage effectively.

Our goal this time is to focus less on pure SNMP
technology and more on the use of SNMP for networking
management.

Of course, each issue will still contain considerable
information about SNMP:

� Keith McCloghrie <kzm@cisco.com> discusses the
SNMP framework, explaining the three core models:
management information, protocol operation, and
administrative infrastructure;

� Kaj Tesink <kaj@mail.bellcore.com> edits the
most frequently asked questions column (be sure to
send him your favorite FAQs); and,

� the editor <st-editorial@simple-times.org>, gets
on a soapbox to skewer the unholy and strike fear in
the hearts of the connection-oriented!

But, The Simple Times needs your help: please consid-
er contributing a technical article to the community! The
publication schedule is quarterly, so that’s plenty of time
for you to do some serious writing.

Standards Summary

SNMPv1 Framework

Consult the latest version of Internet Official Protocol
Standards. As of this writing, the latest version is RFC
1880.
Full Standards:

� RFC 1155 - Structure of Management Information
(SMI);

� RFC 1157 - Simple Network Management Protocol
(SNMP);

� RFC 1212 - Concise MIB definitions; and,

� RFC 1213 - Management Information Base (MIB-II).

Proposed Standards:

� RFC 1418 - SNMP over OSI;

� RFC 1419 - SNMP over AppleTalk; and,

� RFC 1420 - SNMP over IPX.

SNMPv2 Framework

Draft Standards:

� RFC 1902 - SMI for SNMPv2;

� RFC 1903 - Textual Conventions for SNMPv2;

� RFC 1904 - Conformance Statements for SNMPv2;

� RFC 1905 - Protocol Operations for SNMPv2;

� RFC 1906 - Transport Mappings for SNMPv2;

� RFC 1907 - MIB for SNMPv2; and,

� RFC 1908 - Coexistence between SNMPv1 and
SNMPv2.

(In addition, MIB-II has been split into MIB modules for
IP, TCP, and UDP; these documents will be published
shortly as draft standards.)

Proposed Standards:

� RFC 1573 - Evolution of the Interfaces Group of
MIB-II; and,

� RFC 1354 - IP Forwarding Table MIB.

Experimental:

� RFC 1901 - Introduction to Community-based
SNMPv2.

VOLUME 4, NUMBER 1 JANUARY, 1996

The Simple Times 13

MIB Modules

An unofficial index of IETF MIB modules is available.
http://www.simple-times.org/pub/simple-times/html/

Full Standards:

� RFC 1643 - Ether-Like Interface Type (SNMPv1).

Draft Standards:

� RFC 1493 - Bridge MIB;

� RFC 1516 - IEEE 802.3 Repeater MIB;

� RFC 1559 - DECnet phase IV MIB;

� RFC 1657 - BGP version 4 MIB;

� RFC 1658 - Character Device MIB;

� RFC 1659 - RS-232 Interface Type MIB;

� RFC 1660 - Parallel Printer Interface Type MIB;

� RFC 1694 - SMDS Interface Protocol (SIP) Interface
Type MIB;

� RFC 1724 - RIP version 2 MIB;

� RFC 1742 - AppleTalk MIB;

� RFC 1748 - IEEE 802.5 Token Ring Interface Type
MIB;

� RFC 1757 - Remote Network Monitoring MIB; and,

� RFC 1850 - OSPF version 2 MIB.

Proposed Standards:

� RFC 1285 - FDDI Interface Type (SMT 6.2) MIB;

� RFC 1315 - Frame Relay DTE Interface Type MIB;

� RFC 1381 - X.25 LAPB MIB;

� RFC 1382 - X.25 PLP MIB;

� RFC 1406 - DS1/E1 Interface Type MIB;

� RFC 1407 - DS3/E3 Interface Type MIB;

� RFC 1414 - Identification MIB;

� RFC 1461 - Multiprotocol Interconnect over X.25
MIB;

� RFC 1471 - PPP Link Control Protocol (LCP) MIB;

� RFC 1472 - PPP Security Protocols MIB;

� RFC 1473 - PPP IP Network Control Protocol MIB;

� RFC 1474 - PPP Bridge Network Control Protocol
MIB;

� RFC 1512 - FDDI Interface Type (SMT 7.3) MIB;

� RFC 1513 - Token Ring Extensions to RMON MIB;

� RFC 1514 - Host Resources MIB;

� RFC 1515 - IEEE 802.3 Medium Attachment Unit
(MAU) MIB;

� RFC 1525 - Source Routing Bridge MIB;

� RFC 1565 - Network Services Monitoring MIB;

� RFC 1566 - Mail Monitoring MIB;

� RFC 1567 - X.500 Directory Monitoring MIB;

� RFC 1595 - SONET/SDH Interface Type MIB;

� RFC 1604 - Frame Relay Service MIB;

� RFC 1611 - DNS Server MIB;

� RFC 1612 - DNS Resolver MIB;

� RFC 1628 - Uninterruptible Power Supply MIB;

� RFC 1650 - Ether-Like Interface Type (SNMPv2);

� RFC 1666 - SNA NAU MIB;

� RFC 1695 - ATM MIB;

� RFC 1696 - Modem MIB;

� RFC 1697 - Relational Database Management Sys-
tem MIB;

� RFC 1747 - SNA DLC MIB;

� RFC 1749 - 802.5 Station Source Routing MIB; and,

� RFC 1759 - Printer MIB.

Experimental:

� RFC 1187 - Bulk table retrieval with the SNMP;

� RFC 1224 - Techniques for managing asynchronous-
ly generated alerts;

� RFC 1238 - CLNS MIB; and,

� RFC 1592 - SNMP Distributed Program Interface
(SNMP-DPI).

Informational:

� RFC 1215 - A convention for defining traps for use
with the SNMP;

VOLUME 4, NUMBER 1 JANUARY, 1996

The Simple Times 14

� RFC 1270 - SNMP communication services;

� RFC 1303 - A convention for describing SNMP-based
agents;

� RFC 1321 - MD5 message-digest algorithm;

� RFC 1470 - A network management tool catalog;
and,

� RFC 1503 - Automating Administration in SNMPv2
Managers.

Historic:

� RFC 1156 - Management Information Base (MIB-I)
(see RFC 1213);

� RFC 1161 - SNMP over OSI (see RFC 1418);

� RFC 1227 - SNMP MUX protocol and MIB;

� RFC 1228 - SNMP Distributed Program Interface
(SNMP-DPI) (see RFC 1592);

� RFC 1229 - Extensions to the generic-interface MIB
(see RFC 1573);

� RFC 1230 - IEEE 802.4 Token Bus Interface Type
MIB;

� RFC 1231 - IEEE 802.5 Token Ring Interface Type
MIB (see RFC 1748);

� RFC 1232 - DS1 Interface Type MIB (see RFC 1406);

� RFC 1233 - DS3 Interface Type MIB (see RFC 1407);

� RFC 1239 - Reassignment of experimental MIBs to
standard MIBs;

� RFC 1243 - AppleTalk MIB (see RFC 1742);

� RFC 1252 - OSPF version 2 MIB (see RFC 1253);

� RFC 1253 - OSPF version 2 MIB (see RFC 1850);

� RFC 1269 - BGP version 3 MIB (see RFC 1657);

� RFC 1271 - Remote LAN Monitoring MIB (see RFC
1757);

� RFC 1283 - SNMP over OSI (see RFC 1418);

� RFC 1284 - Ether-Like Interface Type MIB (see RFC
1398);

� RFC 1286 - Bridge MIB (see RFC 1493 and RFC
1525);

� RFC 1289 - DECnet phase IV MIB (see RFC 1559);

� RFC 1298 - SNMP over IPX (see RFC 1420);

� RFC 1304 - SMDS Interface Protocol (SIP) Interface
Type MIB (see RFC 1694);

� RFC 1316 - Character Device MIB (see RFC 1658);

� RFC 1317 - RS-232 Interface Type MIB (see RFC
1659);

� RFC 1318 - Parallel Printer Interface Type MIB (see
RFC 1660);

� RFC 1351 - SNMP Administrative Model;

� RFC 1352 - SNMP Security Protocols;

� RFC 1353 - SNMP Party MIB;

� RFC 1368 - IEEE 802.3 Repeater MIB (see RFC
1516);

� RFC 1389 - RIPv2 MIB (see RFC 1724);

� RFC 1398 - Ether-Like Interface Type MIB (see RFC
1643);

� RFC 1441 - Introduction to SNMPv2 (see RFC 1901);

� RFC 1442 - SMI for SNMPv2 (see RFC 1902);

� RFC 1443 - Textual Conventions for SNMPv2 (see
RFC 1903);

� RFC 1444 - Conformance Statements for SNMPv2
(see RFC 1904);

� RFC 1445 - Administrative Model for SNMPv2;

� RFC 1446 - Security Protocols for SNMPv2;

� RFC 1447 - Party MIB for SNMPv2;

� RFC 1448 - Protocol Operations for SNMPv2 (see
RFC 1905);

� RFC 1449 - Transport Mappings for SNMPv2 (see
RFC 1906);

� RFC 1450 - MIB for SNMPv2 (see RFC 1907);

� RFC 1451 - Manager-to-Manager MIB;

� RFC 1452 - Coexistence between SNMPv1 and
SNMPv2 (see RFC 1908);

� RFC 1596 - Frame Relay Service MIB (see RFC
1604);

� RFC 1623 - Ether-Like Interface Type MIB (see RFC
1643); and,

� RFC 1665 - SNA NAU MIB (see RFC 1666).

VOLUME 4, NUMBER 1 JANUARY, 1996

The Simple Times 15

Subscribing to SNMP-related Working Groups

� 100VG-AnyLAN MIB Working Group
<vgmib-request@hprnd.rose.hp.com>

� Application MIB Working Group
<applmib-request@emi-summit.com>

� AToM MIB Working Group
<atommib-request@thumper.bellcore.com>

� BGP Working Group
<iwg-request@ans.net>

� Bridge MIB Working Group
<bridge-mib-request@nsl.dec.com>

� Character MIB Working Group
<char-mib-request@decwrl.dec.com>

� Data Link Switching MIB Working Group
<aiw-dlsw-mib@networking.raleigh.ibm.com>

� DECnet Phase IV MIB Working Group
<phiv-mib-request@jove.pa.dec.com>

� Entity MIB Working Group
<entmib-request@cisco.com>

� FDDI MIB Working Group
<fddi-mib-request@cs.utk.edu>

� Frame Relay Service MIB Working Group
<frftc-request@nsco.network.com>

� Host Resources MIB Working Group
<hostmib-request@andrew.cmu.edu>

� IEEE 802.3 Hub MIB Working Group
<hubmib-request@hprnd.rose.hp.com>

� IDR Working Group
<bgp@ans.edu>

� Interfaces MIB Working Group
<if-mib-request@dtl.labs.tek.com>

� IP over AppleTalk Working Group
<apple-ip-request@cayman.com>

� IPLPDN Working Group
<iplpdn-request@nri.reston.va.us>

� IPv6 MIB Working Group
<ip6mib-request@research.ftp.com>

� ISDN MIB Working Group
<isdn-mib-request@combinet.com>

� IS-IS for IP Internets Working Group
<isis-request@merit.edu>

� Mail and Directory Management Working Group
<ietf-madman-request@innosoft.com>

� Modem Management Working Group
<modemmgt-request@telebit.com>

� NOCtools Working Group
<noctools-request@merit.edu>

� OSPF IGP Working Group
<ospf-request@gated.cornell.edu>

� PPP Extensions Working Group
<ietf-ppp-request@merit.edu>

� RIP Working Group
<ietf-rip-request@xylogics.com>

� Remote Network Monitoring Working Group
<rmonmib-request@cisco.com>

� Routing over Large Clouds Working Group
<rolc-request@nexen.com>

� SNA DLC Services MIB Working Group
<snadlcmib-request@cisco.com>

� SNA NAU Services MIB Working Group
<snanaumib-request@cisco.com>

� SNMP Agent Extensibility Working Group
<agentx-request@fv.com>

� SNMPv2 Working Group
<snmpv2-request@tis.com>

� TCP Client Identity Protocol
<ident-request@nri.reston.va.us>

� DS1/DS3 MIB Working Group
<trunk-mib-request@cisco.com>

� Uninterruptible Power Supply Working Group
<ups-mib-request@cs.utk.edu>

� X.25 MIB Working Group
<x25mib-request@dg-rtp.dg.com>

Internet Resources

Automated Services

Automated services are available in the Internet, pro-
vided “as is” with no express or implied warranty. Each
service accepts a MIB module in the body of a message.
MIB module checking:

� Emissary <mib-checker@epilogue.com>

� mosy <mosy@simple-times.org>

VOLUME 4, NUMBER 1 JANUARY, 1996

The Simple Times 16

MIB module conversion:

� convert SNMPv2 module to SNMPv1
<mib-v2tov1@simple-times.org>

� convert MIB module to HTML
<mib-2html@simple-times.org>

Source Implementations

Source implementations are available in the Internet,
provided under various no-fee licensing terms.
Agents:

� Beholder: an RMON agent for UNIX
ftp://dnpap.et.tudelft.nl/pub/btng/

� CMU SNMP: an SNMPv2u agent for UNIX
ftp://ftp.cisco.com/ftp/kzm/cmusnmp.tar.gz

� UT-snmpV2: an SNMPv2 agent for SPARCs
http://snmp.cs.utwente.nl/

� WILMA: an SNMP agent for UNIX
http://www.ldv.e-technik.tu-muenchen.de/dist/INDEX.html

Compilers:

� mosy: a MIB compiler
ftp://ftp.cisco.com/ftp/kzm/snmptcl.tar.Z

� SMIC: a MIB compiler
<dperkins@scruznet.com>

� snacc: an ASN.1 compiler
ftp://ftp.cs.ubc.ca/pub/local/src/snacc/

Platforms:

� NOCOL: a network monitoring package for UNIX
ftp://ftp.navya.com/pub/vikas/

� Scotty: a Tcl-based environment for management
applications
http://www.cs.tu-bs.de/ibr/projects/nm/

� snmptcl: a Tcl-based environment for management
applications
ftp://ftp.cisco.com/ftp/kzm/snmptcl.tar.Z

� Tricklet: a Perl-based environment for management
applications
ftp://dnpap.et.tudelft.nl/pub/btng/

� WILMA: an X-based monitoring package for UNIX
http://www.ldv.e-technik.tu-muenchen.de/dist/INDEX.html

Publication Information

Featured Columnists
Keith McCloghrie Cisco Systems, Inc.
Marshall T. Rose Dover Beach Consulting, Inc.

Kaj Tesink Bell Communications Research

Contact Information
E-mail st-editorial@simple-times.org

ISSN 1060–6068

Submissions

The Simple Times solicits high-quality articles of tech-
nology and comment. Technical articles are refereed to
ensure that the content is marketing-free. By definition,
commentaries reflect opinion and, as such, are reviewed
only to the extent required to ensure commonly-accepted
publication norms.

The Simple Times also solicits terse announcements
of products and services, publications, and events. These
contributions are reviewed only to the extent required to
ensure commonly-accepted publication norms.

Submissions are accepted only via electronic mail, and
must be formatted in HTML version1.0. Each submis-
sion must include the author’s full name, title, affiliation,
postal and electronic mail addresses, telephone, and
fax numbers. Note that by initiating this process, the
submitting party agrees to place the contribution into
the public domain.

Subscriptions

The Simple Times is available in three editions: HTML,
ASCII, and PostScript. For more information, send a
message to

st-subscriptions@simple-times.org

with a Subject: line of

help

Back issues are available via either the Web or FTP, i.e.,

http://www.simple-times.org
ftp://ftp.simple-times.org

look under /pub/simple-times/issues/. In addi-
tion, The Simple Times has several hard copy distri-
bution outlets. Contact your favorite SNMP vendor and
see if they carry it.

VOLUME 4, NUMBER 1 JANUARY, 1996

