
The Simple TimesTM

THE QUARTERLY NEWSLETTER OF SNMP TECHNOLOGY, COMMENT, AND EVENTSSM

VOLUME 3, NUMBER 2 AUGUST, 1994

The Simple Times is an openly-available publication
devoted to the promotion of the Simple Network Man-
agement Protocol (SNMP). In each issue, The Simple
Times presents: a refereed technical article, an industry
comment, and several featured columns. In addition,
some issues include brief announcements, summaries
of recent publications, and an activities calendar. For
information on submissions, see page 12.

In this Issue:

Technology and Commentary
Technical Article : : : : : : : : : : : : : : : : : : : 1
Industry Comment : : : : : : : : : : : : : : : : : 6

Featured Columns
Security and Protocols : : : : : : : : : : : : : : : 6
Standards : : : : : : : : : : : : : : : : : : : : : : 8

Publication Information 12

The Simple Times is openly-available. You are free
to copy, distribute, or cite its contents. However, any
use must credit both the contributor and The Simple
Times. (Note that any trademarks appearing herein are
the property of their respective owners.) Further, this
publication is distributed on an “as is” basis, without
warranty. Neither the publisher nor any contributor
shall have any liability to any person or entity with
respect to any liability, loss, or damage caused or alleged
to be caused, directly or indirectly, by the information
contained in The Simple Times.

The Simple Times is available via both electronic
mail and hard copy. For information on subscriptions,
see page 12.

Technical Article
Kaj Tesink, Bellcore and Ted Brunner, Tektronix

In this issue: (Re)Configuration of ATM Virtual
Connections with SNMP

The IESG has recently approved a MIB module for
the management of ATM interfaces, RFC 1695. This
MIB module allows for the configuration of virtual
connections (VCs). This article explains by example how
this MIB module must be used in order to configure,
reconfigure, or release VCs. While this procedure seems
elaborate, it actually allows for detailed, step-by-step
error checking for a VC (re)configuration in a simply
scripted management application.

Introduction

For this explanation, the following ATM concepts are
relevant:

� an ATM interface may support multiple VCs simul-
taneously;

� the portion of a VC between two adjacent ATM
interfaces is called a virtual link (VL);

� ATM intermediate systems (ISs, e.g., switches, net-
works) “cross-connect” VLs to form segments of VCs;

� a VC may traverse multiple segments;

� ATM hosts complete VCs by linking them to the ap-
propriate user application or higher layer protocol;

� ATM interfaces may distinguish a two level multi-
plexing hierarchy;

� the lowest level interface distinguishes virtual path
links (VPLs);

� a VPL may support multiple virtual channel links
(VCLs);

� two different types of VCs may be formed: virtual
path connections (VPCs) and virtual channel con-
nections (VCCs);



The Simple Times 2

� VPLs are identified by virtual path identifiers (VPIs),
and VCLs are identified by virtual channel identi-
fiers (both VPIs and VCIs); and,

� A VC is characterized by: a traffic pattern and
quality of service (QoS), and, a topology; this
may be a point-to-point, a point-to-multipoint or a
multipoint-to-multipoint topology.

The ATM MIB treats VCCs and VPCs in much the same
way. Thus, in the interest of simplicity this article
describes procedures in the general terms of VCs and
VLs.

The ATM MIB applies to ATM hosts, to ATM ISs and
to ATM service providers who present an “ATM cloud”.
Because of their different roles, some portions of the MIB
do not apply to all systems, e.g., the tables describing VL
cross-connects only apply to intermediate systems and to
ATM service.

Procedure summary

The manipulation of VCs can be broken down into several
phases, each of which affects different portions of the
end-to-end VC:

VC establishment consists of the following phases:

� reserve appropriate VLs;

� characterize traffic on the VLs; and,

� cross-connect the VLs in ISs, and associate the VLs
with a user application in the hosts.

whilst VC release consists of the following phases:

� release cross-connect in ISs; and,

� release all VLs.

The order of the phases is important to the procedure.
Although the whole procedure may seem complex, each
step serves an important function in detecting errors that
my occur during VC setup and takedown. Experience
with the SNMP set operation has shown that they are,
in general, more difficult than the get operation, and
that detailing error conditions facilitates debugging.

This article illustrates the above procedure through
an example of the configuration of a VCC between
“HostA” and “HostB” through one IS. It assumes that
the underlying VPLs are already established:

Device Interface ATM VC id
========= ========== =============
HostAToIS ifIndex=11 VPI/VCI=17,19
ISToHostA ifIndex=13 VPI/VCI=17,19
ISToHostB ifIndex=3 VPI/VCI=5,7
HostBToIS ifIndex=1 VPI/VCI=5,7

VC establishment

The first phase is to reserve the appropriate VLs.
Basic interface configuration information is provided

through the

atmInterfaceConfTable

This table provides some VC constraints such as
the maximum number of VCs that can be supported
(atmInterfaceMaxVpcs/Vccs), the number of active VCs
(atmInterfaceVpcs/Vccs), and the range of appropriate
VC identifiers (atmInterfaceMaxActiveVpi/VciBits).

The management application creates a VL entry in
the VL table (atmVclTable) by setting the row status to
createAndWait. Note that the VC indices are chosen by
the manager, and not by the agent. The index clause of
the atmVclTable is

{ ifIndex, atmVclVpi, atmVclVci }

Thus:

HostA set atmVclRowStatus.11.17.19=5

IS set atmVclRowStatus.13.17.19=5
set atmVclRowStatus.3.5.7=5

HostB set atmVclRowStatus.1.5.7=5

This fails (on a particular ATM interface) if:

� the agent supports read-only operations on this table
only (i.e., VC (re)configuration is not allowed);

� the selected ifIndex value does not exist, or is not
an ATM interface (see ifTable);

� the maximum number of VCs supported for this
interface has been reached
(atmInterfaceMaxVpcs/Vccs);

� the selected VPI/VCI values are unavailable for use
(see atmInterfaceMaxActiveVpi/VciBits); or,

� The selected VPI/VCI values are in use or reserved
(see existing rows in the atmVclTable).

Otherwise, the agent creates a row and reserves the
VPI/VCI values on that port. It also increments
atmInterfaceVpcs/Vccs.

The second phase is to characterize traffic on the VLs.
The ATM MIB contains a table

atmTrafficDescrParamTable

that contains vectors with traffic parameter values. The
ATM VL tables characterize the traffic for the transmit
and receive direction by pointing to the appropriate
entries in the atmTrafficDescrParamTable. Multiple

VOLUME 3, NUMBER 2 AUGUST, 1994



The Simple Times 3

VLs in the atmVclTable/atmVplTable can point to the
same vector in the atmTrafficDescrParamTable. This
technique allows the agent to predefine self-consistent
traffic vectors in the atmTrafficDescrParamTable. In
addition, the agent may support read-create access,
allowing the manager to specify additional vectors.

The traffic vector consists of an atmTrafficDescrType

column, describing the type of traffic, five columns
that parameterize the traffic (atmTrafficDescrParam1
through atmTrafficDescrParam5 — the number of
columns actually used depends on the traffic type),
and a column indicating the quality of service
(atmTrafficQoSClass). The table is completed by a
row status column (atmTrafficDescrRowStatus) and the
atmTrafficDescrParamIndex which indexes the table.

Thus, the manager selects an existing row(s) in the
atmTrafficDescrParamTable, or, if no suitable row(s)
exists, the manager must create a new row(s) in that
table. For example, when the next free row is 100:

set atmTrafficDescrRowStatus.100
=creatAndWait

This action fails if:

� the agent does not support read-create on this table,
for example, because only a (pre)fixed set of traffic
characterizations are supported; or,

� the specified row is already active.

As an example, a “best effort” VL where none of the traffic
parameters is used is characterized by:

set atmTrafficDescrType.100
=atmNoTrafficDescriptor

As another example, an ATM VC with a 64kbps peak
rate is characterized by:

set atmTrafficDescrType.100=atmNoClpNoScr
atmTrafficDescrParam1.100=167

(peak cell rate = 64000bps/(48bytes x 8bits), or
167cells/sec.)

The quality of service class is specified by, e.g,

set atmTrafficQoSClass.100=bestEffort

These actions fail if:

� the parameters are mutually inconsistent; or,

� the agent does not support the requested values.

The manager activates the traffic descriptor parameter
row by:

set atmTrafficDescrRowStatus.100=active

The management application now characterizes the
traffic parameters of all the VLs associated with
the VC by pointing the receive and transmit traf-
fic index (atmVpl/VclReceiveTrafficDescrIndex and
atmVpl/VclTransmitTrafficDescrIndex) in the VL ta-
ble

atmVpl/VclTable

to the

atmTrafficDescrParamTable

rows containing desired ATM traffic parameter values.
Thus:

HostA set
atmVclReceiveTrafficDescrIndex.11.17.19

=100
atmVclTransmitTrafficDescrIndex.11.17.19

=100

IS set
atmVclReceiveTrafficDescrIndex.13.17.19

=100
atmVclTransmitTrafficDescrIndex.13.17.19

=100
atmVclReceiveTrafficDescrIndex.3.5.7

=100
atmVclTransmitTrafficDescrIndex.3.5.7

=100

HostB set
atmVclReceiveTrafficDescrIndex.1.5.7

=100
atmVclTransmitTrafficDescrIndex.1.5.7

=100

This action fails (on a particular VL) if:

� insufficient resources are available.

The manager now activates the VLs by setting the row
status (atmVpl/VclRowStatus) to active, thus:

HostA set atmVclRowStatus.11.17.19=active

IS set atmVclRowStatus.13.17.19=active
atmVclRowStatus.3.5.7=active

HostB set atmVclRowStatus.1.5.7=active

If this set is successful, the agent has reserved the
resources to satisfy the requested traffic parameter
values and the QoS Class for that VL.

The third and final phase is to cross-connect the VLs
in the intermediate systems.

On the IS, the atmVcCrossConnectTable must be
used to cross-connect the VLs. The atmVpl/VclTables

VOLUME 3, NUMBER 2 AUGUST, 1994



The Simple Times 4

have a cross-connect identifier column for this
purpose (atmVpl/VclCrossConnectIdentifier). Dif-
ferent rows in the atmVpl/VclTable that have
the same cross-connect identifier value are cross-
connected. This is achieved through cross-connect tables
(atmVp/VcCrossConnectTable).

The first step to cross-connecting VLs is to obtain a
unique cross-connect index. An object,

atmVp/VcCrossConnectIndexNext

is defined for this purpose. A get-next will obtain a
value (e.g., 3333). The object is defined such that after a
retrieval operation the agent will increment the value to
the next unassigned one.

This operation fails if:

� the value 0 is returned, which means that all
available values are in use (e.g., the switch can not
support more VCs).

The second step to cross-connecting VLs has the
manager connect VCLs through creation of a row in the
atmVcCrossConnectTable, which is indexed by:

{ atmVcCrossConnectIndex,
atmVcCrossConnectLowIfIndex,
atmVcCrossConnectLowVpi,
atmVcCrossConnectLowVci,
atmVcCrossConnectHighIfIndex,
atmVcCrossConnectHighVpi,
atmVcCrossConnectHighVci }

(Cross-connecting VPLs works in the same way — only
the INDEX clause differs.) The VL indices for the
interface with the lowest index value (i.e., ifIndex=3)
must be specified first in the table’s index. Thus:

set atmVcCrossRowStatus.3333.3.5.7.13.17.19
=createAndWait

This request fails (on a particular cross-connect) if:

� the specified Low-index value is higher than that of
the High-index;

� the requested topology is not supported by the agent
(e.g., a multipoint VC may be requested that is not
supported by this IS);

� the traffic and QoS parameter values of the specified
VCLs are mutually incompatible; or,

� The agent may be unable to connect the two VCLs
(e.g., no resources are available — note that the
agent may represent a network).

If the request is successful the agent fills in the
atmVcCrossConnectIndex values in the corresponding
atmVclTable rows, i.e.,

atmVclCrossConnectIdentifier.13.17.19
= 3333

atmVclCrossConnectIdentifier.3.5.7
= 3333

The manager can now activate the cross-connect row by:

set
atmVcCrossConnectRowStatus.3333.3.5.7.13.17.19

=active

This request fails (on a particular cross-connect) if:

� the agent cannot reserve appropriate resources for
this cross-connect.

Finally, the manager turns on the traffic through the
cross-connected VLs by:

set
atmVcCrossConnectAdminStatus.3333.3.5.7.13.17.19

=up

At this point the traffic flow must be actually turned on.
In the hosts the link to the application must be made.

HostA set atmVclAalType.11.17.19=aal1

HostB set atmVclAalType.1.5.7=aal1

This action fails if:

� the requested application and VL traffic pattern do
not match.

Finally, the manager turns on the traffic at the host by:

HostA set atmVclAdminStatus.11.17.19=up

HostB set atmVclAdminStatus.1.5.7=up

This step-by-step process above can be shortened by
using the createAndGo value for the row-status objects.
However, the advantage of detailed step-wise error
checking would be lost. Therefore, the step-wise process
is recommended.

Graceful VC Release

The first phase is to release the cross-connects in the IS.
To release a VC, all cross-connects and associated

VLs must be released by setting the row status of the
associated table entries to destroy. Thus, for IS:

set
atmVcCrossConnectRowStatus.3333.3.5.7.13.17.19

=destroy

Removal of all rows with

atmVcCrossConnectRowStatus.3333.*

VOLUME 3, NUMBER 2 AUGUST, 1994



The Simple Times 5

will free the value 3333 for future use by the

atmVcCrossConnectIndexNext

and the

atmVclCrossConnectIdentifier

values will be removed from the associated VLs, to signi-
fy that they are no longer cross-connected. Cross-connect
resources are released.

The second phase is to release the VLs.
To reclaim the VLs associated with the VC, each

associated table entry must be destroyed. Thus:

HostA set atmVclRowStatus.11.17.19=destroy

IS set atmVclRowStatus.13.17.19=destroy
atmVclRowStatus.3.5.7=destroy

HostB set atmVclRowStatus.1.5.7=destroy

Upon these actions the agents will release the associated
VL resources, and decrement atmInterfaceVpcs/Vccs.

It is recommended to release a cross-connect before
releasing the individual VLs. The reason is that
releasing a VL first may, in some implementations, be
interpreted as a request for a configuration change (e.g.,
a multipoint topology where one leaf is being deleted;
see below). Proper agent implementation should release
cross-connects automatically if:

� a VL is released and cross-connect reconfiguration is
not supported by the agent; or,

� a VL is released and the remaining topology is mean-
ingless to the agent (e.g., one of two cross-connected
VLs is released).

The third phase is to release the traffic descriptors.
To release the traffic parameter values associ-

ated with the transmit and receive directions of
the VLs, the rows of the traffic descriptor table
(atmTrafficDescrParamTable) pointed to by the VLs,
must be deleted. Deletion proceeds in the normal way
with atmTrafficDescrRowStatus. Such a deletion fails
if:

� the agent does not support read-write access to this
table; or,

� the traffic parameters of this row are still used by
another VC.

VC Reconfiguration

Several VC reconfiguration applications are detailed
below. Several require additional capabilities which an
agent may support.

Traffic and/or QoS parameter value changes. These do
not require additional agent capabilities. The manager
takes down the current VC, defines new VLs with the
desired parameters, and brings up the new VC following
the rules outlined above. This is most simply done as an
entirely new set of VLs. If there is a desire to retain the
VPI/VCI values, the manager may follow these steps:

� turn VL traffic off at hosts
(set the atmVclAdminStatus to down);

� release the cross-connect at ISs
(set the atmVcCrossConnectRowStatus to destroy);

� turn VL traffic off at ISs
(set the atmVclAdminStatus to down);

� take the VLs out of service at the hosts and ISs
(set the atmVclRowStatus to notInService), then,
as before, configure the VLs, cross-connect, and turn
traffic on;

� find or create the new traffic parameter row(s);

� associate the VLs with the new traffic parameter
row(s);

� activate the VLs at the hosts and ISs
(set the atmVcpRowStatus to active);

� turn VL traffic on at ISs
(set the atmVcVrossConnectAdminStatus to up); and,

� turn VL traffic on at hosts
(set the atmVclAdminStatus to up).

Changing the VC application at the hosts (for example,
changing the AAL), requires additional agent capabili-
ties.

A VC topology change requires additional agent capa-
bilities. To accomplish a point to multipoint leaf addition,
follow these steps:

� define the VL to be added; and,

� define an additional row in the cross-connect table

To accomplish a destination change, follow these steps:

� delete the appropriate row in the cross-connect table;

� delete the appropriate VL (host and switch);

� define the VL to be added; and,

� define an additional row in the cross-connect table.

VOLUME 3, NUMBER 2 AUGUST, 1994



The Simple Times 6

Tracing of VCs

In order to trace a VC through multiple switches and
hosts, a manager needs to refer to information about how
switches and hosts are interconnected. This includes
both the location of neighboring switches and hosts, and
the topology of the links to neighboring switches and
hosts. We call this the neighbor information. The
“location” of a switch or host, for our purposes, is the
address of its SNMP agent. The topology of links
between switches is captured in a mapping of each
local interface to a neighbor switch or host, and to an
interface on that neighbor. This latter need results
from a topology ambiguity when switches have several
parallel interconnecting links: which interface connects
to which? Thus, interface values are needed on both
sides of the link.

The neighbor information is expressed, for each phys-
ical interface on a switch, as the address of the agent on
the neighbor switch to which this interface is connected,
and the interface name on the neighbor switch to which
this interface is connected.

ifIndex -> neighborAddress, neighborIfName

Populating the neighbor information objects requires
quite specific topological information. It can be manually
configured, or auto-discovered. In the latter case, an
agent acquires the information by interchanging with
other agents its address and its interfaces. The ATM
Forum has defined an ILMI MIB and access method
which can be used for such a purpose. The ILMI
messages are interchanged on a single ATM link, and
can access the ILMI MIB objects. Using this, each agent
sends an ILMI query out each of its physical interfaces,
requesting its neighbor’s agent address and the incoming
interface name. Upon receiving such a query, a switch
must answer with its address and the name of the
interface on which the query came in. Full network
auto-discovery requires all switches to participate.

The ATM Forum’s Network Management Sub-
committee has recently approved two new IL-
MI objects which will support this auto-discovery.
They are: atmfMyIpNmAddress (non-tabular) and
atmfPortMyIfName in the atmfPortTable, which is in-
dexed by physical interface.

In order to represent this neighbor information at
the SNMP level, the ATM MIB contains two objects.
They are named: atmInterfaceMyNeighborIpAddress

and atmInterfaceMyNeighborIfName, both in the
atmInterfaceConfTable, which is indexed by ifIndex.
Thus the neighbor information is:

ifIndex
-> atmInterfaceMyNeighborIpAddress,

atmInterfaceMyNeighborIfName

To illustrate this, consider the neighbor information for
our example, which is maintained by the agents residing
on HostA, on the IS, and on HostB:

HostA index11 -> ipAddrIS, ifName13

IS index13 -> ipAddrA, ifName11
index3 -> ipAddrB, ifName1

HostB index1 -> ipAddrIS, ifName3

To trace a VC, the manager follows a simple algorithm in-
volving the atmVc/VpCrossConnectTable and the neigh-
bor information in the atmInterfaceConfTable. To start,
it identifies a starting point switch or host, a VC and
a direction, probably by naming an outgoing interface
and VPI/VCI values. The outgoing VPI/VCI values equal
the incoming VPI/VCI values on the next hop interface.
From the atmInterfaceConfTable it determines the next
hop switch, and the incoming interface on that switch.
From the atmVc/VpCrossConnectTable on the next hop
switch it determines the outgoing interface, and the
outgoing VPI/VCI values.

The algorithm is repeated until the VC terminates at
a host. Since it has no cross-connections, a host does not
support the atmVc/VpCrossConnectTable.

Industry Comment
Marshall T. Rose

It’s official: this is the last issue of The Simple Times
for 1994. The reason is simple: the editorial staff (me)
just doesn’t have the time to put in on each issue. Look
for the third volume at the beginning of 1995.

Security and Protocols
Keith McCloghrie

The ATM Forum is a consortium of member companies
and organizations. Its initial charter was to produce
“interoperability agreements”. These agreements are
designed to fill in the gaps where no standards are
defined. As it has turned out, several of the Forum’s
specifications have in fact defined new standards. One
such new standard is the Interim Local Management
Interface (ILMI).

The purpose of the ILMI is to allow the user-side
and network-side of a User Network Interface (UNI)
to communicate with each other in order to exchange
management information concerning the local ATM
interface. Rather than defining a new protocol, the
ILMI is defined to use the same message formats and
semantics as are used by SNMPv1. Thus, it has the

VOLUME 3, NUMBER 2 AUGUST, 1994



The Simple Times 7

same five PDU-types as SNMPv1 (get, get-next, set,
get-response, and, trap), and the variables included
in these PDUs are defined in MIBs using SNMPv1’s SMI.

However, it is most important to realize that the
ILMI has a different paradigm from the use of SNMP
for network management. In network management, a
manager issues requests and an agent responds with
responses and generates traps. In contrast, the ILMI
is used for interface management between the two UNI
management entities (UMEs), one on either side of the
UNI; both UMEs can and do send requests as well as
responses and traps; the two UMEs have their own
(potentially different) values for the same MIB objects.

The term “Interim” was chosen in the early days of the
ATM Forum, when there was great reluctance to deviate
from ITU-T (formerly the CCITT) standards. However,
the ITU-T had no suitable protocol defined for interface
management, and thus the ILMI was adopted in the
“interim”. With the passage of time and the expanding
use of the ILMI, it is now joked that it would make more
sense if the “I” stood for “indefinite”.

The ILMI in UNI 2.0

The initial MIB for use with the ILMI was defined in the
version 2.0 specification of the UNI. This MIB contained:

� configuration parameters, such as the maximum
number of connections supported by the UME, and
whether the interface is a Public or Private UNI;

� tables listing the Permanent Virtual Connections
(one for VPCs, and another for VCCs), giving
operational status, traffic parameters, and, QoS
class for each connection;

� a few optional statistics values for cells received and
transmitted; and,

� values for the transmission and media types of the
interface.

All of the above were defined to be read-only.
In addition to the ILMI MIB, a UME was expected

to support the system group from MIB-II, coldStart,
linkUp and linkDown traps, and allowed to support
enterprise-specific MIB extensions.

Address Registration

As well as some clean-up of the version 2.0 definitions,
the major addition in the version 3.0 specification was
support for the registration of ATM addresses. The
UNI version 3.0 specification defined the format of ATM
addresses (for use with the UNI signaling protocol) as

having the syntax and structure of OSI NSAP addresses,
i.e., being the concatenation of a network prefix with
an End System Identifier (ESI). The ESI is normally an
IEEE MAC address, and the network prefix is the same
on all ports of an ATM switch.

The use of the ILMI to perform address registration
specifies that the network-side UME issues a SetRequest
to provide the host with the network prefix, so that
the user-side UME can combine the prefix and its own
MAC address, and then issue its own SetRequest for
the combined value. Thus, these address registration
procedures allow both the host and the switch to obtain
the host’s ATM address(es) merely from having the
switch know the network prefix and the host know its
MAC address(es).

Support for Topology Discovery

The recently completed UNI 3.1 specification has two
small but significant additions to the ILMI. One is sup-
port for ATM network topology discovery. This support
is in the form of MIB objects giving the network-layer
address at which the local system (host or switch)
receives network management requests. So, for example,
a switch which is managed by SNMP over UDP would
contain its IP address in a ILMI MIB object. The
inter-connected UME would read that ILMI MIB object
and make the value available to its NMS through its
network management MIB. By this means, an NMS
can query one device to ascertain the address of its
neighbor. Another ILMI MIB object provides the means
to differentiate between multiple links between the same
two devices, by containing the textual name (e.g., the
value of ifName) of an interface.

Auto-Configuration of UNI Version

The other ILMI addition in the UNI 3.1 specification
is an indication of the highest version of the UNI
supported. Unfortunately, there’s an incompatibility in
the link-layer of the signaling protocol between versions
3.0 and 3.1 which prevents interoperability. This
addition to the ILMI MIB allows each UME to inspect
the highest version of the UNI specification supported by
the other. Thus, a system which supports both 3.0 and
3.1 can automatically configure itself to interoperate its
neighbor.

Future Uses

Other working groups of the ATM Forum’s Technical
Committee are also looking to use the ILMI for initial-
ization purposes. Specifically, a contribution has been
accepted for ILMI additions allowing a host to obtain

VOLUME 3, NUMBER 2 AUGUST, 1994



The Simple Times 8

the ATM address of a Service. The LAN-Emulation
specification will use this as one means by which a
LAN-Emulation Client can reach the LAN-Emulation
Configuration Service.

It is not yet determined whether the ILMI will be
used at the NNI (the interface between two ATM
switches), although it has been suggested as a means
of extending the Topology Discovery to cover the whole
network. Another possibility is for a switch to be able
to automatically distinguish a UNI from an NNI, and
perform other auto-configuration.

Summary

Multiple benefits ensue from the choice of using SNMP
message formats and semantics for the ILMI. One
is that the commands are simple, well-understood by
implementors, and code is already available to parse
the messages. Another is illustrated in the above
descriptions of how incremental additions of a few MIB
objects can provide significant increases in functionality,
without requiring new messages to be added to the
protocol.

Standards
David T. Perkins

In the extended time between the last and current issues
there have been eleven new RFCs published containing
MIB modules. Four of these were updates to existing
MIB moduless. These were RFC 1643, the Ether-Like
MIB, which is now a full standard; RFC 1658, the
character device MIB; RFC 1659, the RS-232 interface
type MIB; and, RFC 1660, the Parallel Printer interface
type MIB; which are all now Draft standards.

The seven other MIB moduless reflect work that
crosses the spectrum of areas where management is now
possible. These include RFC 1595, the SONET/SDH
interface type MIB; RFC 1604, the Frame Relay Service
MIB; RFCs 1611 and 1612, the DNS Server and Resolver
MIBs; RFC 1628, the UPS MIB; RFC 1650, the SNMPv2
version of the Ether-Lime MIB; RFC 1657, the MIB for
BGP version 4; RFC 1666, the SNA NAU MIB. RFC
1694, the SMDS Interface Protocol (SIP) Interface Type
MIB; RFC 1695, the ATM MIB; RFC 1696, the Modem
MIB; and, and, RFC 1697, the Relational Database
Management System MIB.

The SNMPv2 SMI

In July of last year, the Network Management Area
Director established a transition policy from using the
SNMPv1 SMI to using the SNMPv2 SMI. It requires

that all new MIB modules be written using the SNMPv2
SMI, except that the new syntax types of BIT STRING,
NsapAddress, Counter64, and, UInteger32 are not
allowed except for special cases approved by the Area
Directory. After the SNMPv2 SMI is elevated to a
Draft standard, all syntax types may be used. However,
existing MIB moduless moving to the full standard level,
must be written in the SNMPv1 SMI format until the
SNMPv2 SMI is elevated to Full standard status.

Use of the SNMPv2 SMI has been much appreciated
since it allows then to be much more precise in specifying
in parsable form the grouping and rules for compliance
to the MIB.

Two MIB module checkers are currently available via
e-mail:

mib-checker@epilogue.com
mosy@dbc.mtview.ca.us

For both, the body of the email message should contain
the MIB module to be checked (the “Subject:” lines are
not evaluated). Hopefully other checkers will soon be
available.

Summary of Standards

SNMPv1 Framework (Full Standards):

� 1155 - Structure of Management Information (SMI);

� 1157 - Simple Network Management Protocol
(SNMP);

� 1212 - Concise MIB definitions; and,

� 1213 - Management Information Base (MIB-II).

SNMPv2 Framework (Proposed Standards):

� 1441 - Introduction to SNMPv2;

� 1442 - SMI for SNMPv2;

� 1443 - Textual Conventions for SNMPv2;

� 1444 - Conformance Statements for SNMPv2;

� 1445 - Administrative Model for SNMPv2;

� 1446 - Security Protocols for SNMPv2;

� 1447 - Party MIB for SNMPv2;

� 1448 - Protocol Operations for SNMPv2;

� 1449 - Transport Mappings for SNMPv2;

� 1450 - MIB for SNMPv2;

� 1451 - Manager-to-Manager MIB; and,

VOLUME 3, NUMBER 2 AUGUST, 1994



The Simple Times 9

� 1452 - Coexistence between SNMPv1 and SNMPv2.

Full Standards:

� 1213 - Management Information Base (MIB-II); and,

� 1643 - Ether-Like Interface Type (SNMPv1).

Draft Standards:

� 1493 - Bridge MIB; and,

� 1516 - IEEE 802.3 Repeater MIB;

� 1559 - DECnet phase IV MIB;

� 1658 - Character Device MIB;

� 1659 - RS-232 Interface Type MIB; and,

� 1660 - Parallel Printer Interface Type MIB.

Proposed Standards:

� 1231 - IEEE 802.5 Token Ring Interface Type MIB;

� 1239 - Reassignment of experimental MIBs to
standard MIBs;

� 1243 - AppleTalk MIB;

� 1253 - OSPF version 2 MIB;

� 1269 - BGP version 3 MIB;

� 1271 - Remote LAN Monitoring MIB;

� 1285 - FDDI Interface Type (SMT 6.2) MIB;

� 1315 - Frame Relay DTE Interface Type MIB;

� 1354 - IP Forwarding Table MIB;

� 1381 - X.25 LAPB MIB;

� 1382 - X.25 PLP MIB;

� 1389 - RIPv2 MIB;

� 1406 - DS1/E1 Interface Type MIB;

� 1407 - DS3/E3 Interface Type MIB;

� 1414 - Identification MIB;

� 1418 - SNMP over OSI;

� 1419 - SNMP over AppleTalk;

� 1420 - SNMP over IPX;

� 1461 - Multiprotocol Interconnect over X.25 MIB;

� 1471 - PPP Link Control Protocol (LCP) MIB;

� 1472 - PPP Security Protocols MIB;

� 1473 - PPP IP Network Control Protocol MIB;

� 1474 - PPP Bridge Network Control Protocol MIB;

� 1512 - FDDI Interface Type (SMT 7.3) MIB;

� 1513 - Token Ring Extensions to RMON MIB;

� 1514 - Host Resources MIB;

� 1515 - IEEE 802.3 Medium Attachment Unit (MAU)
MIB;

� 1525 - Source Routing Bridge MIB;

� 1565 - Network Services Monitoring MIB;

� 1566 - Mail Monitoring MIB;

� 1567 - X.500 Directory Monitoring MIB;

� 1573 - Evolution of the Interfaces Group of MIB-II;

� 1595 - SONET/SDH Interface Type MIB;

� 1604 - Frame Relay Service MIB;

� 1611 - DNS Server MIB;

� 1612 - DNS Server MIB;

� 1650 - Ether-Like Interface Type (SNMPv2);

� 1657 - BGP version 4 MIB;

� 1666 - SNA NAU MIB;

� 1694 - SMDS Interface Protocol (SIP) Interface Type
MIB;

� 1695 - ATM MIB;

� 1696 - Modem MIB; and,

� 1697 - Relational Database Management System
MIB.

Experimental:

� 1187 - Bulk table retrieval with the SNMP;

� 1224 - Techniques for managing asynchronously
generated alerts;

� 1238 - CLNS MIB; and,

� 1592 - SNMP Distributed Program Interface
(SNMP-DPI).

Informational:

VOLUME 3, NUMBER 2 AUGUST, 1994



The Simple Times 10

� 1215 - A convention for defining traps for use with
the SNMP;

� 1270 - SNMP communication services;

� 1303 - A convention for describing SNMP-based
agents;

� 1321 - MD5 message-digest algorithm;

� 1470 - A network management tool catalog; and,

� 1503 - Automating Administration in SNMPv2 Man-
agers.

Historical:

� 1156 - Management Information Base (MIB-I);

� 1161 - SNMP over OSI;

� 1227 - SNMP MUX protocol and MIB;

� 1228 - SNMP Distributed Program Interface
(SNMP-DPI);

� 1229 - Extensions to the generic-interface MIB;

� 1230 - IEEE 802.4 Token Bus Interface Type MIB;

� 1232 - DS1 Interface Type MIB;

� 1233 - DS3 Interface Type MIB;

� 1252 - OSPF version 2 MIB;

� 1283 - SNMP over OSI;

� 1284 - Ether-Like Interface Type;

� 1286 - Bridge MIB;

� 1289 - DECnet phase IV MIB;

� 1298 - SNMP over IPX;

� 1304 - SMDS Interface Protocol (SIP) Interface Type
MIB;

� 1316 - Character Device MIB;

� 1317 - RS-232 Interface Type MIB;

� 1318 - Parallel Printer Interface Type MIB;

� 1351 - SNMP Administrative Model;

� 1352 - SNMP Security Protocols;

� 1353 - SNMP Party MIB;

� 1368 - IEEE 802.3 Repeater MIB;

� 1398 - Ether-Like Interface Type MIB;

� 1596 - Frame Relay Service MIB;

� 1623 - Ether-Like Interface Type MIB;

� 1628 - Uninterruptable Power Supply MIB; and,

� 1665 - SNA NAU MIB.

Subscribing to SNMP-related Working Groups

Appletalk/IP Working Group:

� apple-ip-request@cayman.com

AToM MIB Working Group:

� atommib-request@thumper.bellcore.com

BGP Working Group:

� iwg-request@ans.net

Bridge MIB Working Group:

� bridge-mib-request@nsl.dec.com

Character MIB Working Group:

� char-mib-request@decwrl.dec.com

DECnet Phase IV MIB Working Group:

� phiv-mib-request@jove.pa.dec.com

FDDI MIB Working Group:

� fddi-mib-request@cs.utk.edu

Frame Relay Service MIB Working Group:

� frftc-request@nsco.network.com

Host Resources MIB Working Group:

� hostmib-request@andrew.cmu.edu

IEEE 802.3 Hub MIB Working Group:

� hubmib-request@synoptics.com

IDPR Working Group:

� idpr-wg-request@bbn.com

IDRP for IP Working Group:

� idrp-for-ip-request@merit.edu

Interfaces MIB Working Group:

� if-mib-request@thumper.bellcore.com

IPLPDN Working Group:

� iplpdn-request@nri.reston.va.us

VOLUME 3, NUMBER 2 AUGUST, 1994



The Simple Times 11

IS-IS Working Group:

� isis-request@merit.edu

Mail and Directory Management Working Group:

� ietf-madman-request@innosoft.com

Modem Management Working Group:

� modemmgt-request@telebit.com

NOCtools Working Group:

� noctools-request@merit.edu

OSPF Working Group:

� ospfigp-request@gated.cornell.edu

PPP Working Group:

� ietf-ppp-request@ucdavis.edu

RIP Working Group:

� ietf-rip-request@xylogics.com

Remote Monitoring (RMON) Working Group:

� rmonmib-request@jarthur.claremont.edu

SNA DLC Services MIB Working Group:

� snadlcmib-request@cisco.com

SNA NAU Services MIB Working Group:

� snanaumib-request@thumper.bellcore.com

SNMPv2 Working Group:

� snmp2-request@tis.com

TCP Client Identity Protocol:

� ident-request@nri.reston.va.us

Trunk MIB Working Group:

� trunk-mib-request@saffron.acc.com

Uninterruptible Power Supply Working Group:

� ups-mib-request@cs.utk.edu

X.25 MIB Working Group:

� x25mib-request@dg-rtp.dg.com

VOLUME 3, NUMBER 2 AUGUST, 1994



The Simple Times 12

Publication Information

The Simple Times is published with a lot of help from
the SNMP community.

Publication Staff

Coordinating Editor:
Dr. Marshall T. Rose Dover Beach Consulting, Inc.

Featured Columnists:
Dr. Jeffrey D. Case SNMP Research, Inc.

University of Tennessee
Keith McCloghrie Cisco Systems, Inc.
David T. Perkins SynOptics Communications, Inc.

Steven L. Waldbusser Carnegie Mellon University

Contact Information

Postal: The Simple Times
c/o Dover Beach Consulting, Inc.
420 Whisman Court
Mountain View, CA 94043–2186

Fax: +1 415–968–2510
E-mail: st-editorial@simple-times.org

ISSN: 1060–6068

Submissions

The Simple Times solicits high-quality articles of tech-
nology and comment. Technical articles are refereed to
ensure that the content is marketing-free. By definition,
commentaries reflect opinion and, as such, are reviewed
only to the extent required to ensure commonly-accepted
publication norms.

The Simple Times also solicits terse announcements
of products and services, publications, and events. These
contributions are reviewed only to the extent required to
ensure commonly-accepted publication norms.

Submissions are accepted only in electronic form. A
submission consists of ASCII text. (Technical articles
are also allowed to reference encapsulated PostScript
figures.) Submissions may be sent to the contact address
above, either via electronic mail or via magnetic media
(using either 8-mm tar tape, 1

4 -in tar cartridge-tape, or
3 1

2 -in MS-DOS floppy-diskette).
Each submission must include the author’s full name,

title, affiliation, postal and electronic mail addresses,
telephone, and fax numbers. Note that by initiating
this process, the submitting party agrees to place the
contribution into the public domain.

Subscriptions

The Simple Times is available via electronic mail in
three editions: PostScript, MIME (the multi-media 822
mail format), and richtext (a simple page description
language). For more information, send a message to

st-subscriptions@simple-times.org

with a Subject line of

help

In addition, The Simple Times has numerous hard
copy distribution outlets. Contact your favorite SNMP
vendor and see if they carry it. If not, contact the
publisher and ask for a list. (Communications via e-mail
or fax are preferred).

VOLUME 3, NUMBER 2 AUGUST, 1994


