
The Simple TimesTM

THE QUARTERLY NEWSLETTER OF SNMP TECHNOLOGY, COMMENT, AND EVENTSSM

VOLUME 3, NUMBER 1 FEBRUARY, 1994

The Simple Times is an openly-available publication
devoted to the promotion of the Simple Network Man-
agement Protocol (SNMP). In each issue, The Simple
Times presents: a refereed technical article, an industry
comment, and several featured columns. In addition,
some issues include brief announcements, summaries
of recent publications, and an activities calendar. For
information on submissions, see page 12.

In this Issue:

Technology and Commentary
Technical Article : : : : : : : : : : : : : : : : : : : 1
Industry Comment : : : : : : : : : : : : : : : : : 4

Featured Columns
Applications and Directions : : : : : : : : : : : : 4
Ask Dr. SNMP : 5
Security and Protocols : : : : : : : : : : : : : : : 7
Standards : 8

Miscellany
Activities Calendar : : : : : : : : : : : : : : : : : 11

Publication Information 12

The Simple Times is openly-available. You are free
to copy, distribute, or cite its contents. However, any
use must credit both the contributor and The Simple
Times. (Note that any trademarks appearing herein are
the property of their respective owners.) Further, this
publication is distributed on an “as is” basis, without
warranty. Neither the publisher nor any contributor
shall have any liability to any person or entity with
respect to any liability, loss, or damage caused or alleged
to be caused, directly or indirectly, by the information
contained in The Simple Times.

The Simple Times is available via both electronic
mail and hard copy. For information on subscriptions,
see page 12.

Technical Article
Aiko Pras and Jacques Togtema
Twente University of Technology

In this issue: SNMPv2 at Twente University
The management group at Twente University in the

Netherlands is currently developing SNMPv2 software.
The purpose of this article is to provide an overview of
this development and give future plans. It is not the
intention to go into to much detail — the last section of
this article tells how to obtain more detailed information.

Background

The last couple of years the network management
group of our university has participated in a number
of European RACE and Esprit projects. We worked
on management architectures and, as most Europeans,
concentrated on OSI and TMN.

After some time however it became clear to us that we
needed more experience to judge the merits of the various
architectural concepts. This resulted in a decision to
start our own implementation project. Given the growing
importance of Internet management and the different
“atmosphere” of the Internet world, we decided to start
implementing the complete SNMPv2 Framework (RFCs
1441–1452). Since we weren’t involved in the definition
of SNMPv2, our work would reveal whether SNMPv2
is sufficiently defined to allow implementation by non-
adepts.

Goals

Our first goal was to learn through experience. To
achieve this goal, we decided to discuss and implement
all aspects of SNMPv2 ourselves. For example, we
implemented the Basic Encoding Rules from scratch,
although we could have started from one of the existing
SNMPv1 packages.

Our second goal is to share our ideas with the
community. We therefore make our software freely
available and invite others to comment.

It should be noted that we’re not working on a
commercial product. If, for example, we have to choose
between clarity and performance, we choose clarity.

The Simple Times 2

Features

The two main differences between our implementation
and those of others (e.g., CMU and 4BSD/ISODE), is our
multi-process structure and our high-level programming
interface (API). We will discuss each of them in a
separate section.

Multi-process Structure

Our software development takes place on SUN Sparc-
stations running UNIX (SunOS 4.1 and Solaris 2) using
the GNU C compiler. Although we can’t really test our
software on other UNIX systems, we try to keep our
software portable.

As UNIX allows multiple processes to cooperate, we
decided to use this facility and develop a structure in
which a single process, called the SNMPv2 Protocol Ma-
chine (SPM), serves multiple management applications.

The SPM is responsible for the transfer of SNMPv2
management information between systems and has no
knowledge of management application issues. The SPM
is therefore not bothered with MIB issues and things
like Textual Conventions. The attractive property of
our structure is that the SPM can be the same for
the manager and agent side: it is the management
application that determines whether a system acts in
a manager or agent role.

Modification of this role is easy, since other applica-
tions (playing different roles) can be connected to the
same SPM. Development of dual-role intermediate-level
managers (e.g., to support the Manager-to-Manager
MIB), is therefore straightforward.

transport (e.g., UDP)

SPM

management
application

X

Communication between SPM and management ap-
plications uses interprocess communication, such as
TLI and sockets. As such, it is even possible to run
management applications on different machines. Of
course there is a performance penalty in having this
multi-process structure with IPC. We believe however
that this performance penalty is sufficiently compensat-
ed by the improved flexibility and the lower complexity.

As the first management application becomes active,
the SPM is automatically started. The SPM initializes by
reading a configuration file and is then ready to serve the
application. If other management applications become
active, they will be connected to the same SPM. The SPM
remains active until all management applications have
terminated. Upon termination, the SPM saves a copy of
the recent configuration information to disk.

The SPM is implemented in a single-threaded fash-
ion, although we originally considered a multi-threaded
approach. The advantage of a multi-threaded approach
is that messages can be processed in different threads
independent from each other. It guarantees that large
messages that require authentication and encryption
will not delay the processing of small messages that
do not have security requirements. However, after an
investigation of DES and MD5 processing times and after
we understood the complexity associated with multi-
threaded design, we decided to use a single-threaded
approach.

Implications

The decision to have a multi-process structure and to
separate management transfer functions from manage-
ment application functions, has important implications.
Let’s discuss two of them.

The first implication is that management of SNMPv2
itself (meta-management) should not be performed by
the SPM, but by special (meta-management) applica-
tions. As a consequence, the SPM is not bothered with
issues such as maintaining the Party, SNMPv2 and
Manager-to-Manager MIBs. This is equivalent to the
approach followed with other protocols, such as IP and
TCP. Implementors of IP and TCP are not bothered with
MIB issues either; it is sufficient if they provide a local
interface that allows reading and writing of IP and TCP
variables by a special management process. It is the task
of this special process to transform local information into
the form required by the MIB-II and check the validity
of the management operations.

transport (e.g., UDP)

SPM

management
application

X

meta-management
application

Y

VOLUME 3, NUMBER 1 FEBRUARY, 1994

The Simple Times 3

To illustrate the functioning of our meta-management
application (MMA), consider the example of changing a
party’s authentication clock. To change this clock, a set
PDU must be received by the MMA via the same IPC
port (e.g., X) as used for other application exchanges.
The MMA (and not the SPM!) implements the rules (as
specified by the Party-MIB) for changing clocks: the
MMA therefore checks whether the received PDU also
changes the authentication key. If this is the case, the
MMA uses the local interface port (e.g., Y) to perform the
actual clock change.

A second implication is that proxy relationships will
not be performed by the SPM, but by special proxy
applications. This makes the design of proxy agents
straightforward: it is sufficient to understand the
management API, it is not necessary to know the details
of SNMPv2.

Application Programming Interface

The main difference between our implementation and
other implementations (e.g., CMU and 4BSD/ISODE)
is the programming interface. As opposed to other
implementations, our API hides most of the complexity
of SNMPv2 from the management applications. Writers
of management applications need little knowledge of
SNMPv2, which makes development of applications
easier.

Our API is actually a library of C-functions, which
must be included in every management application.
Details of the IPC mechanism are handled within the
API and are therefore not visible to the writer of
management applications.

The API functions can be divided into two categories:
functions necessary for initialization and termination
purposes and functions necessary for sending and re-
ceiving SNMPv2 PDUs. To initialize, the application
calls the snmpOpen function. This function starts, if
necessary, the SPM and connects the application to it. To
terminate, the application calls the snmpClose function.

This function removes the connection with the SPM —
if no other applications are connected to the SPM, the
SPM will terminate too.

Most of the API functions are used for sending and
receiving SNMPv2 PDUs. Most “service elements” (e.g.,
get) require four function calls: two for sending (Request
and Response), and two for receiving (Indication and
Confirm). The Response and Confirm function calls are
necessary for sending and receiving Response PDUs.
Although it is possible to use the same Response and
Confirm functions for all ‘service elements’, we decided
(primarily for clarity reasons) to introduce separate
function calls for each individual “service element”.

Since the application can not know in advance to
which “service element” a received PDU will belong, the
application precedes each Indication and Confirm call
with a snmpLook call. This call tells the application the
type of service element that has been put into the IPC
queue by the SPM and must therefore be handled first.

The table below shows all API calls that can be used
to send and receive SNMPv2 PDUs. Note that because
the SPM translates, at the agent’s side, a get-bulk into
a number of get-next calls, there are no Indication and
Response calls for get-bulk. The table also shows that
the SPM, upon receipt of an inform PDU from another
SPM, automatically generates the response PDU.

Req Ind Res Con
+=======+=======+=======+=======

get | x | x | x | x
get-next | x | x | x | x
get-bulk | x | | | x
set | x | x | x | x
inform | x | x | | x
trap | x | x | |

Of course, associated with each function call are a
number of parameters, including:

� the IP address of remote system;

� the list of variable bindings;

� the request ID;

� the requested security, i.e., “none”, “auth” (MD5 is
used), or “priv” (MD5 and DES is used); and,

� a string that helps to determine the context, which
may be empty.

Status

The first version of our software was released in Novem-
ber 1993. The major part of this software was written
by a single student as part of his M.Sc. thesis. This
first release should be considered as a “statement of
direction” — although it can be used to manage SNMPv2
systems, it is not yet complete, e.g., there are no
meta-management applications, so it is not yet possible
to modify the Party, SNMPv2 and Manager-to-Manager
MIBs.

Experience

At the beginning of our project we assumed SNMPv2
would be simple and easy to implement. This assumption
proved to be wrong. SNMPv2 is complex for the following
reasons:

VOLUME 3, NUMBER 1 FEBRUARY, 1994

The Simple Times 4

The demands put on SNMPv2 are much stronger than
those put on SNMPv1. This inherent complexity appears
for instance from the fact that 12 RFCs were needed to
specify SNMPv2.

SNMPv2 has been specified as a monolithic whole —
little attempt has been made to decompose SNMPv2
into a number of building blocks with clearly defined
interfaces. We believe that a decomposition of SNMPv2
into transfer, application, meta-management and proxy-
oriented parts (along the lines of our approach) would
have made SNMPv2 easier to understand.

The RFCs describe various mechanisms into great
depth, but they hardly explain their purpose and the
way they should be used (this is particularly true for
SNMPv2’s administrative model). It would for instance
be helpful to see a description of how to search through
the party, context, access control, and view table to
determine the party and context identities that must be
included with the PDU.

Still no real problems were encountered. Interoper-
ability testing against the CMU package went smoothly.
We may therefore conclude that it is possible for non-
adepts to implement SNMPv2.

Future

After our first release demonstrated that it was possible
to develop SNMPv2 software, we formed a project team
to continue this development for at least another year.
Our new team is much bigger than the one we had last
year, so we expect to complete all aspects of the SNMPv2
framework, including meta-management, this year. Our
plan is to make new versions available on a regular
basis (e.g., every three months) Our sources can be
obtained via anonymous FTP from ftp.cs.utwente.nl
in the directory pub/src/snmp. Our email address is:
snmp@cs.utwente.nl. Further information, including all
project documentation, is made available via our WWW
server:

http://snmp.cs.utwente.nl:8001/snmp/html/homepage.html

Industry Comment
Marshall T. Rose

Welcome to the third year of The Simple Times.
With this issue, we’re moving to a quarterly distri-

bution cycle. The reason is simple: the coordinating
editor simply doesn’t have enough time to put together
six issues each year. So, we’re going to try four issues a
year.

As a consequence of this, the Working Group Synopsis
column is discontinued. Although Fred Baker, Deidre
Kostick, and Kaj Tesink have done a wonderful job with
each issue, the column will lose too much of its value with
a longer distribution cycle. Fortunately, each of these
contributors has promised to write a technical article
later on for The Simple Times!

Applications and Directions
Steven L. Waldbusser

In this issue: Deploying SNMPv2

As people have been tracking the progress of SNMPv2
deployment they have wondered about where the bot-
tlenecks in the deployment process are, what is driving
the process, and where products will materialize most
quickly. Of course, this is a chicken and egg problem, so
the answer to the question “Will the deployment be led
by managers or agents?” is largely “Yes!”. In an attempt
to be a bit more accurate than this, we will compare the
current scenario with the deployment of SNMPv1, and
then make some observations about the current situation
and predictions of the future.

SNMP (version 1) Deployment

In 1988, as the first SNMP specifications were finished,
there were two interesting things about the industry:
there were very few network management applications
or protocols available, and much of the networking
infrastructure (gateways and servers) was built on UNIX
platforms. The first point created an incredible vacuum
that was filled by SNMP. The second meant that a few
free and commercial UNIX products easily built a critical
mass of deployed products. This was followed fairly
quickly by many embedded (i.e., non-UNIX) agents as
vendors realized it was quite inexpensive to add an
agent to a product and provide another check-off item
for customers who had been loudly demanding network
management capabilities.

Applications and platforms of varying sophistication
came later, and when vendors realized the complexity of
building a platform, many scaled back to only providing

VOLUME 3, NUMBER 1 FEBRUARY, 1994

The Simple Times 5

applications that managed their products. This author
hastens to add that the complexity was not due to SNMP,
but due to the difficulties of writing X-based GUIs. There
was a great sucking sound as the hierarchical map
gobbled up development resources (for scant value to the
customer, but that a subject for another time).

SNMPv2

When we look at today’s environment, two differences
are immediately apparent. The incredible vacuum that
existed before is not present because SNMPv1 is han-
dling customers’ most pressing problems. Of SNMPv2’s
many benefits, the three that will drive customer demand
are configuration capability, security, and speed. In
addition, UNIX implementations are not enough to build
critical mass. (This author frequently ponders whether a
free DOS/Windows SNMPv2 Host MIB implementation
would be an entirely different matter.)

These issues explain why SNMPv2 has not been de-
ployed as quickly as SNMP1. Despite this environment,
some vendors have already shipped SNMPv2, each of the
major platform vendors have committed to delivering
SNMPv2 support this year, and many of the major
equipment vendors have made the same commitment.
So what will lead the pack?

SNMPv2 Managers vs. Agents

While SNMPv2 agents are simpler to implement in
general, this is especially true when one looks at SNMP
security. If one is using a commercial or free SNMPv2
implementation to build their agent, SNMPv2 puts
no additional burden on the agent except perhaps for
providing long-term storage for security parameters. On
the other hand, an SNMPv2 platform vendor needs
to provide a security administration system and user
interfaces for configuring security information. This
is the bulk of the work in adding SNMPv2 to an
existing SNMPv1 product and thus the major barrier
to deployment of managers. While both managers and
agents achieve the check-off by implementing SNMPv2,
agents certainly get more bang for the buck. There is
reason to believe that many agent vendors already know
this and are acting accordingly.

Todays networks are built with many closed systems
that are managed by open systems. A customer can
add SNMPv2 management applications by using one
of the shipping commercial products or one of the free
implementations, but there is no way for a customer to
add SNMPv2 to a router, bridge, or hub. This makes it
more important for the vendors of managed systems to
act. Of course, the advantage to them is that they are
not as dependent on the MS vendors as the MS vendors

are dependent on the agents. Customers can make
some use of configuration capability, security, and speed
in SNMPv2 agents by using the available managers,
independently of the availability of SNMPv2 for the
popular platforms.

Customer Demands

Customers today may be muted in their requests for
SNMPv2 because things are not so bad with SNMPv1,
and because they have to push on a lot of vendors to get
SNMPv2 deployed on their networks. However, once a
customer has a few SNMPv2 agents deployed, it will be
clear to the customer which vendor is keeping him from
SNMPv2’s enhancements with his favorite platform.
At this point, the customer will become much more
aggressive in demanding SNMPv2 from that vendor.

For these reasons, the chicken-and-egg situation will
be broken first by agents, followed closely by applications
and platforms. This will all be playing out this year as
vendors make good on their commitments.

Ask Dr. SNMP
Jeffrey D. Case

Dear Dr. SNMP,
We are working with some agent software that sends
back replies on a port other than 161. For example, a
get is sent from port 3000 to port 161, and the agent
sends its response from port 4000 back to port 3000.
This is disconcerting to us because we can’t decode it
with a protocol analyzer.

I have looked at the relevant RFCs (SNMP and UDP).
The SNMP RFC states only that “the agent receives
requests on port 161” but doesn’t implicitly state that
it should reply to them on this port. So, is this behavior
legal?

—Bummed out Believer from Beaverton

Dear Bummed out Believer from Beaverton,
Down on the farm, we have a saying:

“You’d be right, but you’d be dead.”

When I first learned to drive an automobile, I was taught
that in the jurisdiction where I lived, the pedestrian
always has the right-of-way. Consequently, if a person
is standing beside the road, and a large, tri-axle dump
truck is hurtling down the hill toting a 20 ton load of
gravel, and the person leaps in front of the truck, then
the truck must stop, because the person on foot has
the right-of-way. The fact that this violates physics is
irrelevant. Of course, when the truck runs over the
pedestrian, while it may be good for the pedestrian’s

VOLUME 3, NUMBER 1 FEBRUARY, 1994

The Simple Times 6

estate, this has rather drastic consequences for the
pedestrian.

You might ask, “What does this have to do with my
problem?” There are many things in SNMP which
are “legal” but which have rather drastic consequences.
By my reading of the SNMP protocol specification, as
articulated in RFC 1157, it says:

A protocol entity receives messages at UDP port
161 on the host with which it is associated for
all messages except for those which report traps
(i.e., all messages except those which contain
the Trap-PDU).

It is noteworthy that it does not say “agent”! It says
“protocol entity”, and elsewhere in the specification,
protocol entity is used when referring to agents and
managers. Therefore, the specification appears to
require all protocol entities, i.e., both managers and
agents, to send and receive request/response messages
at port 161.

I can tell from your question that you are well aware
(but your supplier may not be aware) that existing
practice for the request-response PDUs is as follows:

� A manager station prepares a request message
containing an appropriate query or command, with
a particular request ID, and a particular community
string.

� The manager grabs a port, typically any unused port
greater than 1024 (because access to low valued
ports are usually restricted to applications with
special privilege on systems with real operating
systems) and sends the request message from one
of the manager’s addresses and this port number to
one of the agent’s addresses and UDP port 161.

� Unless the request message is lost, corrupted, or too
large to be received by the agent, then the agent
receives the request, conducts a rudimentary parse
of it, and extracts the community string.

� The community string is compared with the valid
configured communities, typically by scanning a
table, to determine if the request is deemed au-
thentic. If it is determined that the request is not
authentic, then an error counter is incremented, the
request message is dropped (and possibly logged),
and a notification is optionally (depending upon
the setting of snmpEnableAuthenTraps) enqueued
to the configured managers, indicating that an
authentication failure has been detected.

� If the message is determined to be authentic, then
the agent further parses the message, and if success-
ful, processes the message to prepare a suitable reply

or a suitable error message. The resulting message
is prepared with the same request ID and the same
community string as the original request.

� The response is then sent from the agent at the
address and port where the request was received
to the manager at the address and port which origi-
nated the request. This is where there is a mismatch
between existing practice and the operations of the
system you ask about. In addition, while the SNMP
protocol specification is silent about this, the Host
Requirements RFC (RFC 1122, page 32) requires an
additional check to insure that the reply is being
sent to a valid address, i.e., that the source address
of the original request was not invalid.

Given this background, it is easy to see that the law of
the land may not match perfectly with existing practice,
which is directly analogous to the notion that that the
lawyers involved would debate whether, in fact, the truck
really is or is not required to stop.

You ask if the unit’s operation is “legal”. Dr. SNMP
is an engineer, not a jurist, and is unable to state an
opinion on your question at this time. It is regrettable
that there are several issues similar to the one you cite
in the SNMPv1 protocol specification. Use of OBJECT

IDENTIFIER fragments which are too large to fit in an
unsigned longword and use of INTEGERs which too large
to fit in a signed longword are but two examples, both of
which are addressed in the new SNMPv2 specifications,
but we must bear with the current undesirable situation
until SNMPv2 is more widely deployed. Use of these
questionable practices may be “legal”, just as jumping
in front of the truck may be legal. However, few would
debate whether thrusting oneself in front of a truck in
order to create a roadkill-in-motion situation is a good
idea, and most would agree that deploying systems that
don’t conform to the existing practice is a similarly bad
idea. I think the better question is, “Is it better to be
right, or to be alive?” and to avoid being roadkill.

VOLUME 3, NUMBER 1 FEBRUARY, 1994

The Simple Times 7

Security and Protocols
Keith McCloghrie

Since the original publication of MIB-I (RFC 1066), in
August 1988, several of its MIB groups have needed to be
upgraded. The latest such upgrade is for the interfaces
group, with the recent publication of RFC 1573 as a
Proposed Internet Standard. In this article, we’ll look
at the needs for, and results of this evolution of the
interfaces group.

Dynamic interfaces

The interfaces group defines a generic set of managed
objects such that any network interface can be managed
in an interface-independent manner through these man-
aged objects. Each interface is represented by a row
in the ifTable and identified by a unique value of the
ifIndex object. The description of ifIndex not only
constrains its value to start at one and be less or equal
to the number of interfaces, but also requires that the
value for a particular interface must not change except
at a restart of the managed agent. This represents a
problem for agents which can have a network interface
dynamically removed (e.g., when an interface other than
the one with the highest ifIndex value is unconfigured).
The evolution solves this by allowing the value of ifIndex
to be greater than the current number of interfaces,
although it still recommends that ifIndex values be
assigned contiguously starting at one.

Interface Sub-layers

The original model of the interfaces group was that
each network interface represented a complete interface
stack which spanned from immediately underneath the
internet-layer down to the physical layer. Media-specific
information is defined in separate MIBs as an extension
of the generic information contained in the ifTable. This
works fine for interfaces such as ethernet. However,
experience with interfaces having multiple sub-layers
beneath the internetwork-layer has shown the need
to define management information for each sub-layer,
For example, an interface with PPP running over an
HDLC link which uses a RS232-like connector: each of
these sub-layers has its own media-specific MIB module,
and thus, needs its own row in the ifTable. Thus,
the evolution allows each sub-layer to be defined as a
network interface, and also defines a new table, the
ifStackTable, to represent how such interfaces are
layered.

Consistent with this new approach is the clarification
that there is no requirement that an internet-layer
protocol runs at some layer above a network interface.

For example, in MAC-layer bridges, for those ifTable

counters of packets/octets received on an interface and
“delivered to a higher-layer protocol”, the bridge’s for-
warding module is considered to be a “higher-layer” to
the MAC-layer of each port on the bridge.

In order to prevent a surfeit of linkUp and linkDown

traps, one for each sub-layer, with this new multiple sub-
layer model, an object has been added to enable/disable
these trap types. By default, the lowest sub-layer of each
interface stack has its traps enables, and each higher
sub-layer has its traps disabled.

Bit and Character-oriented Interfaces

RS-232 is an example of a character-oriented sub-layer
over which (e.g., through use of PPP) IP datagrams can
be sent. Since many of the objects in the ifTable are
defined in terms of packets, it is not possible to have
a character-oriented sub-layer represented by a (whole)
row in the ifTable. Even fewer of the objects apply to a
bit-oriented interface, such as a DS1 link. A further com-
plication is that some subnetwork technologies transmit
data in fixed length transmission units. One example
of such a technology is cell relay, and in particular
Asynchronous Transfer Mode (ATM), which transmits
data in fixed-length cells. Representing such an interface
as a packet-based interface produces redundant objects.

To address this issue, the evolution makes use of
the SNMPv2 capability to define overlapping MIB
groups for conformance purposes. It defines an
ifGeneralGroup which applies to all network inter-
faces, an ifPacketGroup group containing those ob-
jects applicable to all packet-based interfaces, and an
ifFixedLengthGroup containing objects applicable to
interfaces which transmit data in fixed-length trans-
mission unit, including character-oriented interfaces. It
then specifies conformance statements requiring each in-
terface to implement the ifGeneralGroup and whichever
other group is applicable.

Counter Size

Since 1988, the bandwidth of network media has in-
creased significantly. For higher-speed interfaces, the
original 32 bit counters (e.g., for octet/packets) wrap
around in a shorter amount of time. For example,
ifInOctets can wrap in as little as 5.7 minutes for FDDI,
and 34 seconds for a 1-gigabit medium! Thus, polling
the interface statistics frequently enough not to miss a
counter wrap is becoming increasingly problematic.

To address this issue, the evolution was granted a
waiver to use the new SNMPv2 64-bit counter type
for use with higher speed interfaces. 64-bit octet

VOLUME 3, NUMBER 1 FEBRUARY, 1994

The Simple Times 8

counters are specified for interfaces greater than 20Mb/s.
64-bit packet counters are specified for interfaces greater
than 650Mb/s. These new counters supplement, not
replace, the existing 32-bit counters in order to foster
compatibility with existing implementations.

ifOperStatus

Two new states have been added to ifOperStatus:
“dormant” and “unknown”. The dormant state indicates
that an interface is not actually ready to pass packets,
but rather in a “pending” state, waiting for some
external event. An example of where this state will
be valuable is for connection-oriented interfaces where
specific connections are taken down after a period during
which there is no traffic.

ifType

A new textual convention, IANAifType, has been defined
for the enumerated values of ifType. This allows new
ifType values to be assigned by the Internet Assigned
Number Authority (IANA). The new MIB includes an
initial version of IANAifType, which will be updated and
periodically re-issued by the IANA.

Other Changes

Several other minor changes have also been made,
including:

� a new object to report interfaces speeds greater than
2.2Gb/s;

� new objects to count the number of multicast packets
and the number of broadcast packets separately;

� the objects, ifSpecific and ifOutQLen, have been
deprecated; because neither of them has proved to
have sufficient usefulness to management applica-
tions; and,

� updated definitions of the ifTestTable and
ifRcvAddressTable, originally defined in RFC 1229,
have been specified.

Standards
David T. Perkins

Since the last issue, there have been five new SNMP-
related standards published. These include an updated
and extended version of the interfaces group from MIB-
II, three MIBs for managing applications, and an update
of the DECnet Phase IV MIB as it proceeded to Draft
Standard status.

Recently Published RFCs

1559 - DECnet Phase IV MIB (Draft Standard)
This MIB module (in SNMPv1 SMI format) is an updated
version of RFC 1289. There were general cleanups to fix
typos, and to bring the MIB in conformance with the
general editorial style. A new version of the adjacency
table was created. A few redundant object types were
removed, and the status of seven of the groups was
changed from mandatory to optional.

RFC 1565 - Network Services Monitoring MIB (Proposed
Standard)
This MIB module (in SNMPv2 SMI format) presents
a general framework to monitor network services such
as mail transfer agents, or directory service agents.
The MIB module is designed to complement the Host
Resources MIB (RFC 1514) and also to be application
and transport protocol neutral. There are two tables in
this MIB module: the first contains basic information
about each network service in a system, and the second
contains a limited number of attributes about each active
association for each network service.

RFC 1566 - Message Transfer Agent (MTA) MIB (Pro-
posed Standard)
This MIB module (in SNMPv2 SMI format) is the first
example of a class of network service that may be
monitoried. This MIB module applies to generic message
relays. The first table measures aggregate incoming
and outgoing mail traffic. The second table measures
in greater detail the traffic including associations and
errors for “groups”. The final table is used to show which
“associations” belong to each “group”.

RFC 1567 - Directory (X.500) System Agent (DSA) MIB
(Proposed Standard)
This MIB module (in SNMPv2 SMI format) is for another
type of network service, X.500 DSAs. The first table
has counters for each incoming operation, each outgoing
operation, and errors observed. The next table reports
cache performance. The final table tracks interactions
with peer DSAs.

RFC 1573 - Interfaces Group MIB (Proposed Standard)
The interfaces group from MIB-II (RFC 1213) was
extracted and expanded to create this MIB module (in
SNMPv2 SMI format). This 55 page document is the
evolution of a key component of the core IETF SNMP
model of managed systems. The first 20 pages address
general and specific issues with the original interfaces
group. The remainder of the document consists of two
MIB modules. The first contains the definition of the
textual convention used to define each interface type.

VOLUME 3, NUMBER 1 FEBRUARY, 1994

The Simple Times 9

This organization allows easy update by the Internet
Assigned Numbers Authority (IANA). The second MIB
module contains five tables. The first is the original IF
table from MIB-II. The second table extends the IF table
with new object types, replacements, and ones from the
ifExtnsTable from RFC 1229. A “stack” table is next,
which defines relationships among the sub-layers of an
interface. The fourth table is used to perform specific
tests on interfaces, replacing a similar table in RFC
1229). And the last table specifies the addresses which
each interface may receive packets/frames.

Summary of Standards

SNMPv1 Framework (Full Standards):

� 1155 - Structure of Management Information (SMI);

� 1157 - Simple Network Management Protocol
(SNMP);

� 1212 - Concise MIB definitions; and,

� 1213 - Management Information Base (MIB-II).

SNMPv2 Framework (Proposed Standards):

� 1441 - Introduction to SNMPv2;

� 1442 - SMI for SNMPv2;

� 1443 - Textual Conventions for SNMPv2;

� 1444 - Conformance Statements for SNMPv2;

� 1445 - Administrative Model for SNMPv2;

� 1446 - Security Protocols for SNMPv2;

� 1447 - Party MIB for SNMPv2;

� 1448 - Protocol Operations for SNMPv2;

� 1449 - Transport Mappings for SNMPv2;

� 1450 - MIB for SNMPv2;

� 1451 - Manager-to-Manager MIB; and,

� 1452 - Coexistence between SNMPv1 and SNMPv2.

Full Standards:

� 1213 - Management Information Base (MIB-II).

Draft Standards:

� 1398 - Ether-Like Interface Type MIB;

� 1493 - Bridge MIB; and,

� 1516 - IEEE 802.3 Repeater MIB; and,

� 1559 - DECnet phase IV MIB.

Proposed Standards:

� 1231 - IEEE 802.5 Token Ring Interface Type MIB;

� 1239 - Reassignment of experimental MIBs to
standard MIBs;

� 1243 - AppleTalk MIB;

� 1253 - OSPF version 2 MIB;

� 1269 - BGP version 3 MIB;

� 1271 - Remote LAN Monitoring MIB;

� 1285 - FDDI Interface Type (SMT 6.2) MIB;

� 1304 - SMDS Interface Protocol (SIP) Interface Type
MIB;

� 1315 - Frame Relay DTE Interface Type MIB;

� 1316 - Character Device MIB;

� 1317 - RS-232 Interface Type MIB;

� 1318 - Parallel Printer Interface Type MIB;

� 1354 - SNMP IP Forwarding Table MIB;

� 1381 - X.25 LAPB MIB;

� 1382 - X.25 PLP MIB;

� 1389 - RIPv2 MIB;

� 1406 - DS1/E1 Interface Type MIB;

� 1407 - DS3/E3 Interface Type MIB;

� 1414 - Identification MIB;

� 1418 - SNMP over OSI;

� 1419 - SNMP over AppleTalk;

� 1420 - SNMP over IPX;

� 1461 - Multiprotocol Interconnect over X.25 MIB;

� 1471 - PPP Link Control Protocol (LCP) MIB;

� 1472 - PPP Security Protocols MIB;

� 1473 - PPP IP Network Control Protocol MIB;

� 1474 - PPP Bridge Network Control Protocol MIB;

� 1512 - FDDI Interface Type (SMT 7.3) MIB;

� 1513 - Token Ring Extensions to RMON MIB;

VOLUME 3, NUMBER 1 FEBRUARY, 1994

The Simple Times 10

� 1514 - Host Resources MIB;

� 1515 - IEEE 802.3 Medium Attachment Unit (MAU)
MIB;

� 1525 - Source Routing Bridge MIB;

� 1565 - Network Services Monitoring MIB;

� 1566 - Mail Monitoring MIB;

� 1567 - X.500 Directory Monitoring MIB; and,

� 1573 - Evolution of the Interfaces Group of MIB-II.

Experimental:

� 1187 - Bulk table retrieval with the SNMP;

� 1224 - Techniques for managing asynchronously
generated alerts;

� 1228 - SNMP Distributed Program Interface
(SNMP-DPI); and,

� 1238 - CLNS MIB.

Informational:

� 1215 - A convention for defining traps for use with
the SNMP;

� 1270 - SNMP communication services;

� 1303 - A convention for describing SNMP-based
agents;

� 1321 - MD5 message-digest algorithm;

� 1470 - A network management tool catalog; and,

� 1503 - Automating Administration in SNMPv2 Man-
agers.

Historical:

� 1156 - Management Information Base (MIB-I);

� 1161 - SNMP over OSI;

� 1227 - SNMP MUX protocol and MIB;

� 1229 - Extensions to the generic-interface MIB;

� 1230 - IEEE 802.4 Token Bus Interface Type MIB;

� 1232 - DS1 Interface Type MIB;

� 1233 - DS3 Interface Type MIB;

� 1252 - OSPF version 2 MIB;

� 1283 - SNMP over OSI;

� 1284 - Ether-Like Interface Type;

� 1286 - Bridge MIB;

� 1289 - DECnet phase IV MIB;

� 1298 - SNMP over IPX;

� 1351 - SNMP Administrative Model;

� 1352 - SNMP Security Protocols;

� 1353 - SNMP Party MIB; and,

� 1368 - IEEE 802.3 Repeater MIB.

Subscribing to SNMP-related Working Groups

Appletalk/IP Working Group:

� apple-ip-request@cayman.com

AToM MIB Working Group:

� atommib-request@thumper.bellcore.com

BGP Working Group:

� iwg-request@ans.net

Bridge MIB Working Group:

� bridge-mib-request@nsl.dec.com

Character MIB Working Group:

� char-mib-request@decwrl.dec.com

DECnet Phase IV MIB Working Group:

� phiv-mib-request@jove.pa.dec.com

FDDI MIB Working Group:

� fddi-mib-request@cs.utk.edu

Frame Relay Service MIB Working Group:

� frftc-request@nsco.network.com

Host Resources MIB Working Group:

� hostmib-request@andrew.cmu.edu

IEEE 802.3 Hub MIB Working Group:

� hubmib-request@synoptics.com

IDPR Working Group:

� idpr-wg-request@bbn.com

IDRP for IP Working Group:

� idrp-for-ip-request@merit.edu

VOLUME 3, NUMBER 1 FEBRUARY, 1994

The Simple Times 11

Interfaces MIB Working Group:

� if-mib-request@thumper.bellcore.com

IPLPDN Working Group:

� iplpdn-request@nri.reston.va.us

IS-IS Working Group:

� isis-request@merit.edu

Mail and Directory Management Working Group:

� ietf-madman-request@innosoft.com

Modem Management Working Group:

� modemmgt-request@telebit.com

NOCtools Working Group:

� noctools-request@merit.edu

OSPF Working Group:

� ospfigp-request@gated.cornell.edu

PPP Working Group:

� ietf-ppp-request@ucdavis.edu

RIP Working Group:

� ietf-rip-request@xylogics.com

Remote Monitoring (RMON) Working Group:

� rmonmib-request@jarthur.claremont.edu

SNA DLC Services MIB Working Group:

� snadlcmib-request@apertus.com

SNA NAU Services MIB Working Group:

� snanaumib-request@thumper.bellcore.com

SNMPv2 Working Group:

� snmp2-request@thumper.bellcore.com

TCP Client Identity Protocol:

� ident-request@nri.reston.va.us

Trunk MIB Working Group:

� trunk-mib-request@saffron.acc.com

Uninterruptible Power Supply Working Group:

� ups-mib-request@cs.utk.edu

X.25 MIB Working Group:

� x25mib-request@dg-rtp.dg.com

Activities Calendar

� 29th Meeting of the IETF

March 28–April 1, Seattle, WA

For information: +1 703 620 8990

� N+Interop Conference and Exhibition

May 2–6, Las Vegas, NV

For information: +1 415 578 6900

VOLUME 3, NUMBER 1 FEBRUARY, 1994

The Simple Times 12

Publication Information

The Simple Times is published with a lot of help from
the SNMP community.

Publication Staff

Coordinating Editor:
Dr. Marshall T. Rose Dover Beach Consulting, Inc.

Featured Columnists:
Dr. Jeffrey D. Case SNMP Research, Inc.

University of Tennessee
Keith McCloghrie Hughes LAN Systems, Inc.
David T. Perkins SynOptics Communications, Inc.

Steven L. Waldbusser Carnegie Mellon University

Contact Information

Postal: The Simple Times
c/o Dover Beach Consulting, Inc.
420 Whisman Court
Mountain View, CA 94043–2186

Tel: +1 415–968–1052
Fax: +1 415–968–2510

E-mail: st-editorial@simple-times.org

ISSN: 1060–6068

Submissions

The Simple Times solicits high-quality articles of tech-
nology and comment. Technical articles are refereed to
ensure that the content is marketing-free. By definition,
commentaries reflect opinion and, as such, are reviewed
only to the extent required to ensure commonly-accepted
publication norms.

The Simple Times also solicits terse announcements
of products and services, publications, and events. These
contributions are reviewed only to the extent required to
ensure commonly-accepted publication norms.

Submissions are accepted only in electronic form. A
submission consists of ASCII text. (Technical articles
are also allowed to reference encapsulated PostScript
figures.) Submissions may be sent to the contact address
above, either via electronic mail or via magnetic media
(using either 8-mm tar tape, 1

4 -in tar cartridge-tape, or
3 1

2 -in MS-DOS floppy-diskette).
Each submission must include the author’s full name,

title, affiliation, postal and electronic mail addresses,
telephone, and fax numbers. Note that by initiating
this process, the submitting party agrees to place the
contribution into the public domain.

Subscriptions

The Simple Times is available via electronic mail in
three editions: PostScript, MIME (the multi-media 822
mail format), and richtext (a simple page description
language). For more information, send a message to

st-subscriptions@simple-times.org

with a Subject line of

help

In addition, The Simple Times has numerous hard
copy distribution outlets. Contact your favorite SNMP
vendor and see if they carry it. If not, contact the
publisher and ask for a list. (Communications via e-mail
or fax are preferred).

VOLUME 3, NUMBER 1 FEBRUARY, 1994

