
The Simple TimesTM

THE BI-MONTHLY NEWSLETTER OF SNMP TECHNOLOGY, COMMENT, AND EVENTSSM

VOLUME 2, NUMBER 3 MAY/JUNE, 1993

The Simple Times is an openly-available publication
devoted to the promotion of the Simple Network Man-
agement Protocol (SNMP). In each issue, The Simple
Times presents: a refereed technical article, an industry
comment, and several featured columns. In addition,
some issues include brief announcements, summaries
of recent publications, and an activities calendar. For
information on submissions, see page 20.

In this Issue:

Technology and Commentary
Technical Article : : : : : : : : : : : : : : : : : : : 1
Industry Comment : : : : : : : : : : : : : : : : : 3

Featured Columns
Applications and Directions : : : : : : : : : : : : 4
Ask Dr. SNMP : 5
Security and Protocols : : : : : : : : : : : : : : : 6
Standards : 9
Working Group Synopses : : : : : : : : : : : : : : 12

Miscellany
Activities Calendar : : : : : : : : : : : : : : : : : 19

Publication Information 20

The Simple Times is openly-available. You are free
to copy, distribute, or cite its contents. However, any
use must credit both the contributor and The Simple
Times. (Note that any trademarks appearing herein are
the property of their respective owners.) Further, this
publication is distributed on an “as is” basis, without
warranty. Neither the publisher nor any contributor
shall have any liability to any person or entity with
respect to any liability, loss, or damage caused or alleged
to be caused, directly or indirectly, by the information
contained in The Simple Times.

The Simple Times is available via both electronic
mail and hard-copy. For information on subscriptions,
see page 20.

Technical Article
Barry Bruins, Network General Corporation

In this issue: Windows SNMP: an SNMP API for MS
Windows Applications

Windows SNMP is a developing industry standard for
Microsoft Windows applications that need SNMP ser-
vices. The standardization effort began in the summer
of 1992 when Microsoft published their Windows/NT
SNMP Programmer’s Reference. This interface that was
shipped in the MS Windows/NT SDK did not include
provision for asynchronous interfaces (asynchronous in-
terfaces allow applications to issue requests and continue
executing instead of blocking while waiting for the
response) and was quite different from existing SNMP
APIs built upon commercial Windows protocol stacks.
Additionally, no provision for SNMP version 2 was made.

Thus a desire emerged to create a common API be-
tween Windows and Windows/NT environments that was
full featured enough to provide a base for SNMP-based
management applications. While the initial discussions
were conducted among a closed group, this was opened
up in a birds of a feather session at INTEROP March
’93. Consensus was reached on two issues: 1) Windows
SNMP must include provision for SNMPv2; and, 2) only
the manager API would be standardized in the first
version. The complexities of a sub-agent interface in
an SNMP API were too daunting to attack at this time
and would slow down the whole effort.

A second BOF was held at the IFIP Third International
Symposium on Integrated Network Management in
April. This BOF turned out to be just an informational
session as many of the contributors (and commentators)
were not present. The remainder of this article discusses
the Windows SNMP work as proposed in the April 23,
1993 draft, which is still subject to considerable change.

The important attributes of Windows SNMP are:

� supports SNMP version 1 and version 2;

� provides transport protocol independence;

� supports both synchronous and asynchronous pro-
gramming models; and,

� allows multiple management applications to co-
exist.

The Simple Times 2

SNMPv1 and SNMPv2 Support

The Windows SNMP work provides an important guide
to management platform providers in developing APIs
that provide evolution to SNMP version 2 transparently.
The SNMP version 2 framework has an Administrative
Model that can seem extremely complex to the uninitiat-
ed. The interaction of privacy, authentication, proxy and
context capabilities can seem like a Gordian knot. The
good news is that all of this complexity can be hidden
from the application developer as well as the user.

Windows SNMP API calls to send and receive mes-
sages refer to: an entity handle, a context handle, and a
quality of service parameter. By understanding how to
use these three concepts, an SNMPv2 application is as
easy to write as an SNMPv1 application — in fact, the
application need never know which version of SNMP is
being used.

The entity database is the local management entity’s
Party MIB. The Party MIB from SNMPv2 is the collec-
tion of the partyTable, contextTable, aclTable, and,
viewTable. The contents of the Party MIB define what
collections of objects the management application can
access and the types of access allowed. Depending upon
the sophistication of the Windows SNMP stack, there
could be zero, one or many entity databases per machine.
In SNMPv1-only implementations, the entity database is
really non-existent. In SNMPv2 implementations, there
can be a different entity database, per-application or
per-user, in order to give different privileges of access
to the network management data to different users.

The context specifies a collection of managed object
resources. In SNMPv1, a context is analogous to an
IP address (or domain name) and community string
association. The IP address identifies the endpoint of
a request and the community string implicitly identifies
the accessible MIB objects at that endpoint. In SNMPv2,
contexts also identify the MIB objects, but they do
so explicitly, so a context identifier can be used to
look up source and destination party pairs to conduct
the requested operation. In the Windows SNMP API,
user-friendly context names are looked up with the
SnmpStrtoCtx() function.

Quality of service indicates whether authentication
and/or privacy is required. The following table shows
how these parameters are used in Windows SNMP for
SNMPv1 and SNMPv2 operations:

SNMP | Entity | Context | QOS
-----+-----------+-------------+---------
v1 | community | IP address | 0

| string | domain name |
-----+-----------+-------------+---------
v2 | database | context | required

| name | name | services

Local database names and local context names are
implementation-specific. (The author believes that some
convention is necessary here to achieve application
portability.)

Transport Independence

There are no transport specific references in the Windows
SNMP API. The transport domain of a particular context
is contained within the entity database. An implemen-
tation can attempt to use the local context name to
determine hints about the transport of choice in two
situations: for SNMPv1 transactions, and for unknown
cases where default entries are to be created in the entity
database.

(A)synchronous Programming Model

Synchronous programming implies that the application
will treat an SNMP request as a long subroutine call.
This is the simplest model to use when programming
because the system takes care of everything. When a call
to SnmpSendMsg() is issued, the protocol stack sends
the request and the application is suspended until the
response is received.

For simple tools, this mechanism is fine. For manage-
ment applications that need to poll multiple devices or
keep their user interface responsive, this model will not
suffice. This was the only model envisioned in the MS
Windows/NT specification because it was assumed that
each SNMP request would be spawned as a separate
thread to be executed. Multiple threads and thus
multiple outstanding SNMP requests could be executing
simultaneously. (For really high-powered management
applications, the overhead for spawning the environment
for a new thread for each SNMP request would be
overwhelming.)

Asynchronous programming implies that the API calls
will return immediately as soon as the request is queued
to the network. The Windows SNMP implementation
would then, asynchronously, notify the application via a
message to its window that a packet had been received
for it. In processing the notification, the application could
then retrieve the response and process it.

Multiple Management Application Coexistence

Windows SNMP requires that compliant implementa-
tions provide service to multiple applications concurrent-
ly. Providing service concurrently means that the API
must keep track of which application issued each request
so that the sequence number in the response can be
used to map back to the application making the request.
Additionally, traps may require duplication if multiple

VOLUME 2, NUMBER 3 MAY/JUNE, 1993

The Simple Times 3

applications request them. SNMPv2 inform-requests
can only go to a particular application as a response is
required.

Windows SNMP Specification

Windows SNMP interfaces are divided into the following
categories:

� communication functions;

� entity functions;

� message functions;

� variable binding functions; and,

� utility functions.

The communication functions are used both to activate
the API and to exchange SNMP traffic: SnmpOpen()
provides the API with a handle to the window that the
management applications wants to be notified on for
traps and asynchronous responses, returning a session
handle to be used in future API calls. SnmpClose()
tells the API to release the session. SnmpSendMsg()
sends a message that the application provides. The
software behind the API will check the entity database
to determine if there are any party entries in the
local party MIB that can communicate to the requested
context with the requested quality of service. This
function also accepts a timeout value so the application
can control the length of time to wait on a response
to the message. SnmpRecvMsg() is used to receive
any asynchronous message such as a snmpV2-trap,
inform-request, or response received when us-
ing the asynchronous programming model. Final-
ly, SnmpRegister() is used to register interest in
snmpV2-traps or inform-requests. An OID is
specified to identify which notifications an applications
is interested in. Observant readers will note that
SNMPv1 traps are not supported by the API. That’s
right! Although an implementation of Windows SNMP
must support SNMPv1, it uses the SNMPv2 format
for traps when communicating with a management
application. (The SNMPv2 documents explain how
to map between the two formats.) By automatically
providing this mapping, management applications are
simplified and management applications needn’t worry
about which version of the protocol is in use.

The entity functions are used to specify entity and
context information. At present, the functions allow only
lookup operations. A future version of the API will likely
allow local configuration as well.

The remaining functions are all “utility” subroutines
performing a myriad of low-level tasks such as creating,

manipulating, and releasing SNMP PDUs, variable
bindings, and so on. These are fairly typical SNMP API
routines found in many other implementations.

Windows MIB API

The Windows MIB API is a companion specification that
allows a management application to walk the MIB object
definitions that are known to this platform. While it is
an optional part of the Windows SNMP specification, it
provides useful features not found on some commercial
SNMP management platforms. The most obvious use
might be for a MIB browser, having the MIB data on hand
which allows applications to pick up DISPLAY-HINTS and
enumerated values in order to provide a richer user
interface.

This specification could be expanded with the SNMPv2
AGENT-CAPABILITIES macros to designate which agents
implement which objects.

Where things stand

The Windows SNMP Specification has progressed quite
a bit since March, and representatives from several
companies have indicated that they will support the
standard when it is complete and there is sufficient
demand. However, there has recently been a flurry of
activity on the Windows SNMP mailing list, so some
change in the specification is possible before finalization.
You can obtain the current version of the Windows SNMP
specification, using anonymous FTP from:

ftp.netmanage.com

There is also a discussion group. To subscribe, send mail
to:

winsnmp-request@microdyne.com

the mailing list itself is called:

winsnmp@microdyne.com

Industry Comment
Marshall T. Rose

In this issue, I had hoped to publish a companion to a
keynote presentation made at the Third International
Symposium on Integrated Network Management, which
was held in San Francisco in April. As usual, however,
the page count on this issue didn’t allow it. So, if
you’re interested, it will be published in the June issue
of ConneXions. (If you don’t subscribe to the industry
newsletter ConneXions, you should — for information
call +1 415–941–3399).

VOLUME 2, NUMBER 3 MAY/JUNE, 1993

The Simple Times 4

Applications and Directions
Steven L. Waldbusser

In this issue: A Look at the Host Resources MIB

As the Host Resources MIB nears the IETF standards
track, it is constructive to evaluate what it is and how
it promises to improve systems management of internet
hosts.

SNMP has been implemented widely on many vari-
eties of platforms, from routers and hubs to workstations
and PCs. To date, the standard MIB modules implement-
ed on hosts have been oriented towards the networking
aspects of those hosts. The only systems management
MIB modules for hosts have been proprietary. Never-
theless, these proprietary modules have been written for
many of the host types available such as PCs, Macs, and
workstations.

After a fair amount of experience had been gained
with these proprietary MIB modules, a desire grew
for a standard module which would incorporate the
functions common amongst the various vendor-specific
modules. Such a MIB would better allow third-party
applications to be written that could manage various
types of internet hosts. Given that most network
installations are multi-vendor and have several different
types of host systems, a common MIB module and
common applications would allow a network operations
center to manage these various types of hosts with a
common user interface.

Enough desire grew for this standard host MIB that
a working group was formed. That working group has
defined a MIB, the Host Resources MIB, that will soon
be evaluated with respect to the standards track.

The Host Resources MIB Module

The MIB is divided into six groups of objects: the system
group, the storage group, the devices group, the
running software group, the running software
performance group, and, the installed software
group.

The system group has several objects that describe
overall system parameters such as the number of users
and processes, and where the operating system is loaded
from.

The storage group provides utilization information
on all forms of storage on the system, including RAM,
disk drives, and, memory buffers.

The devices group provides configuration and fault
information about all devices on the system. Some types
of devices such as printers and disk drives have more
detailed information specified than others. For example,

one kind of device is a network interface. MIB-II
already defines extensive information on interfaces, so
the devices group really doesn’t need to duplicate those
features.

The running software group lists the software
running on the system while the running software
performance group provides performance data about
each piece of software running on the system. The
installed software group lists all the software in-
stalled locally on the system.

Expected Uses

MIB modules should be written to provide variables
with known uses rather than providing all possible
information in a specific area without regard to its
usefulness. The Host Resources MIB was written with
this in mind — in fact, some variables were dropped
from early versions of this MIB module because their
usefulness could not be proven.

The Host Resources MIB provides many types of func-
tions, primarily in the fault management, configuration
and asset management, and, performance management
areas.

The Host Resources MIB helps a number of system
management jobs that a network manager might face.
With this MIB module, a network manager can down-
load an inventory of all equipment on various LANs
across an organization, without regard to what types
of systems the equipment is attached to. In addition
to determining how much memory and disk is installed
in each computer, the types and versions of other
hardware and software components can be retrieved.
Obsolete versions of software or hardware can be flagged
and incompatibilities between various hardware and
software components can be detected. Disk drives can be
monitored to make sure that routine backup procedures
are being followed and that the disks are not running out
of space.

Textual information on a system, such as that found
in file names, is returned in a format that allows any
international language or character set. This allows
the MIB module to monitor systems that have been
internationalized, and (again) shows that SNMP is
suited for this task.

A Typical Fault Diagnosis Exercise

In a typical environment, the network/systems manager
might get a call from a user on a PC or workstation
complaining of difficulty running an application. The
manager can retrieve information over the network to
diagnose the problem. Initially, the manager might

VOLUME 2, NUMBER 3 MAY/JUNE, 1993

The Simple Times 5

check the RAM, disk and buffer usage on the system to
see if any allocation failures have been experienced or if
any are near their limits. The manager can check to see if
too many users are on the system, too many processes are
in use, or if the system is otherwise overloading the CPU.
For each device, the manager can check the status and
and if any errors have occurred that might be the cause
of the user’s problem — for example, printers indicate
whether they need paper or any other attention.

After exploring each of these areas of the system, if
the problem has not been found, it is likely a software
problem. Software systems are becoming more and
more complex, and it is especially important to verify
the compatibility amongst various pieces of software,
such as the operating system, the windowing system,
the network file system, and, the applications software.
The Host Resources MIB allows the manager to remotely
determine what versions of these pieces of software
have been installed, and what versions are running.
This allows useful applications to be written that know
of these incompatibilities and are smart enough to
automatically flag such errors. If a piece of software
that is running is causing a problem, the manager can
use the MIB (with SNMP’s security) to kill that process.

The Host Resources MIB provides a solution to many
problems that once required vendor-specific MIB mod-
ules. Now that this soon-to-be standard MIB module
has stabilized, those functions can be implemented in a
vendor-neutral manner. In addition to the advantages
this provides to application builders, users are provided
with a common interface for performing systems man-
agement across multiple types of host platforms. This
common interface will prove to be useful to solve a variety
of problems users have.

Ask Dr. SNMP
Jeffrey D. Case

Dear Dr. SNMP,
I’m a poor and confused user of a wide variety of SNMP
agents in our wonderful and complex networking world.
I am puzzled, intrigued, and confused by a notion in the
definition of MIBs which you might be able to resolve.

Each object in a MIB definition has a STATUS field
which specifies optional or mandatory. In a popular
publication, The Simple Book, by a certain Marshall
T. Rose, I found the statement

“It is a convention of the Internet-standard MIB
that no object may have an STATUS field of
optional. All objects are considered to be
mandatory.”

This I find confusing. Why the need for the STATUS field
in the first place (but this is only an aside).

What I’d REALLY like to know is the following:
suppose an agent supports a certain MIB group, let’s
say the interfaces group of MIB-II, but the device it
manages happens to deal not in octets but “nonets”. In
this case, the ifInOctets object can’t contain any useful
information. But, because of the convention, the agent
has to provide it. What value for this counter should
be returned in a get-response? Are there any magic
cookie values, by convention, which indicate that the
number I receive is nonsense?

— Needing Magic Cookie in New Hampshire

Dear Needing Magic Cookie in New Hampshire,
Down on the farm, we have a saying:

“Truth and roses have thorns about them.”

Your question touches two aspects of the SNMP philos-
ophy on which I am sure that Dr. Rose and Dr. SNMP
would be in strong agreement.

First, network management agents should always tell
the truth. When managing a network, receipt of no infor-
mation is better than receipt of erroneous information,
allowing for appropriate measurement error, of course.

Second, in SNMP, options are generally considered
harmful because they lead to waste. This is because
agent writers must implement them but manager station
applications writers cannot use them. Agent writers
must implement them due to market pressures resulting
from competitive bidding (some bid writers use these
kinds of features to prevent unwanted vendors from
being able to bid). A management station application
must be able to perform, whether or not an optional
variable is present. Exceptions abound, but, in general,
if a manager can ever do its job without an optional
variable, it can always do without it, so optional things
tend to remain unused.

The STATUS field is present in all MIB documents,
not only standard ones. Standard MIB documents are
the minority — there are far more MIB objects defined
in other MIB documents, such as vendor-specific MIB
documents. Optional status may make more sense in
these other MIB documents.

In your example of the system which implements
“nonets”, the agent cannot and should not implement
the variable. It should implement all other objects in
the interfaces group that it can, but claims should
not be made that the agent is compliant with the
MIB document, since its implementation is necessarily
incomplete.

The agent should return the noSuchName error re-
sponse to an SNMPv1 get-request, or the next avail-
able object in response to a get-next request. In

VOLUME 2, NUMBER 3 MAY/JUNE, 1993

The Simple Times 6

SNMPv2, the agent should return the noSuchObject
exception in the response. This new exception was
added in SNMPv2 to address this problem, and others.

There are no values, by convention or otherwise, which
indicate the number is nonsense. All values in the
range of a Counter variable are valid; hence, none can
be invalid. The way that an agent should say that
it cannot support a variable is to say that it cannot
support that variable in the way that one says that it
cannot support that variable. Unfortunately, this makes
it more difficult to claim in one’s marketing literature
that all variables are supported, especially the ones that
are not supported. Some vendors have a simple, albeit
inappropriate, approach to this. They lie.

Dear Dr. SNMP,
I understand a new working group has been chartered to
re-write the interfaces portion of MIB-II. Why is this
necessary? Why can’t we just fix the problems without
massive changes?

— Preservationist in Pennsylvania

Dear Preservationist in Pennsylvania,
Down on the farm, we have a saying,

“It is fruitless to attempt to indoctrinate a super-
annuated canine with innovative maneuvers.”

Or something like that. Dr. SNMP has discovered a
new book called The Saurus. Even though it is dry
reading, Dr. SNMP believes that if he can figure out the
plot, this new book will help him provide increasingly
sophisticated answers in the future.

The interfaces group has had known problems since
the late 1980s. Some people think that the interfaces
layer is the layer “above” or “behind” a connector. Some
people think that the interfaces layer is the layer “below”
IP. In systems where these statements are equivalent,
there are few problems. However, the plumbing within
today’s systems is increasingly twisted. Consider a rel-
atively simple example: a router which carries DECnet
tunneled within IP packets via an X.25 link duplexed
over two serial lines. In this and other cases, it is
difficult, if not impossible, to map this structure onto
the existing MIB objects. Furthermore, there are no
documents which specify how this mapping should be
done in standard ways.

Although these problems were known when MIB-II
was written, they were not addressed. Similarly, the
SNMPv2 effort consciously opted to defer consideration
of these problems for several reasons. First, these
are difficult problems, for which the solutions are not
readily apparent. Second, these are MIB evolution issues
which do not have any apparent protocol implications.

Third, the effort to define and deploy SNMPv2 was
felt to be “big enough” without tackling unrelated MIB
redefinition efforts. Finally, an important part of the
SNMPv2 coexistence and transition plan is that no MIB
redefinition is necessary for compatibility with SNMPv2.
Redefinition of MIB 2 as a part of the SNMPv2 design
effort would have added confusion to this message.

We should all look forward to the timely completion of
the efforts to solve these problems.

Security and Protocols
Keith McCloghrie

With the publication of the SNMPv2 RFCs, more im-
plementors are now taking a look at the specifications.
One of the questions which several of them have asked
is how much of the SNMPv2 administrative framework,
and how much of the Party MIB, is it necessary to im-
plement. This question is particularly relevant since the
MODULE-CONFORMANCE macros in RFC 1447 only specify
the compliance levels with respect to the implementation
of MD5 and DES; they fail to document the intended
subsets of Party MIB implementation corresponding to
the compliance levels. Thus, in this issue, we’ll look at
minimal implementations of the Party MIB for various
types of agents.

Initial Party/Context Identifiers

First, recall that the Party MIB (RFC 1447) identifies
two subtrees in the OBJECT IDENTIFIER (OID) naming
tree, one for use by convention as initial Party identifiers,
and the other for use by convention as initial Context
identifiers. These conventions define six parties and two
contexts for each IP address.

For the six parties defined for the agent having IP
address a.b.c.d, three parties are local to the agent
and three are local to a manager which wishes to
communicate with the agent having that IP address.
Each of the three pairs has different authentication and
privacy parameters, as follows:

initialPartyId.a.b.c.d.1
noAuth/noPriv executing at the agent

initialPartyId.a.b.c.d.2
noAuth/noPriv executing at a manager

initialPartyId.a.b.c.d.3
md5Auth/noPriv executing at the agent

initialPartyId.a.b.c.d.4
md5Auth/noPriv executing at a manager

initialPartyId.a.b.c.d.5
md5Auth/desPriv executing at the agent

initialPartyId.a.b.c.d.6
md5Auth/desPriv executing at a manager

VOLUME 2, NUMBER 3 MAY/JUNE, 1993

The Simple Times 7

The two contexts defined for each IP address,
initialContextId.a.b.c.d.1 and
initialContextId.a.b.c.d.2, are used by convention
to give different access rights to the unauthenticated par-
ties and to the authenticated parties, respectively. The
corresponding definitions of access control entries and
MIB views are also specified as part of the convention.

The OIDs in the above conventions are specific to
agents implementing SNMPv2 over UDP/IP, and we’ll
use these in the discussion below. However, for other
transport domains, similar conventions can be defined
using other OIDs.

A Minimal Insecure Agent

Now, let’s look at the minimal implementation of the
Party MIB by an insecure agent, i.e., one which
implements neither MD5 nor DES. An agent of this
type supports only noAuth/noPriv parties, and thus
each and every request should have identical access
rights. Thus, it need have only one MIB view,
one context, two access control entries and two par-
ties. The two parties are: initialPartyId.a.b.c.d.1

and initialPartyId.a.b.c.d.2. The one context is
initialContextId.a.b.c.d.1. The one MIB view would
provide access to everything in the agent’s MIB, and
thus a single entry in the viewTable (e.g., for internet)
would suffice. One of the access control entries allows
the manager to issue requests (e.g., get-request) to
the agent, using the two parties to access the one
context. The other access control entry allows traps to
be generated and transmitted to a manager.

With this configuration, any number of managers
can access the agent using the noAuth/noPriv parties,
and one manager can receive traps from the agent.
To support this configuration, there is no need for
the agent to support the creation/deletion of entries
in any of the tables in the Party MIB; instead, all
entries can have a StorageType value of permanent.
In fact, the only object in the Party MIB, to which it
needs to support write access, is the partyTAddress

for initialPartyId.a.b.c.d.2, in order to configure
the destination of the traps it generates. (Note that
configuring an address for initialPartyId.a.b.c.d.2

does not stop managers at other addresses from using
this party for requests/responses, since the agent ignores
partyTAddress when sending responses, and instead
sends them back to the address from which the request
was received.)

To summarize, the minimal configuration is:

partyIdentifier: initialPartyId.a.b.c.d.1
partyIndex: 1
partyTAddress: a.b.c.d:161

partyLocal: true
partyAuthProtocol: noAuth
partyPrivProtocol: noPriv
partyStorageType: permanent

partyIdentifier: initialPartyId.a.b.c.d.2
partyIndex: 2
partyTAddress: address for traps
partyLocal: false
partyAuthProtocol: noAuth
partyPrivProtocol: noPriv
partyStorageType: permanent

contextIdentifier:
initialContextId.a.b.c.d.1

contextIndex: 1
contextLocal: true
contextViewIndex: 1
contextStorageType: permanent

aclTarget (dest. party): 1
aclSubject (src party): 2
aclResources (context): 1
aclPrivileges: get, get-next,

get-bulk, set
aclStorageType: permanent

aclTarget (dest. party): 2
aclSubject (src party): 1
aclResources (context): 1
aclPrivileges: snmpV2-trap
aclStorageType: permanent

viewIndex: 1
viewSubtree: internet
viewType: included
viewStorageType: permanent

A Regular Insecure Agent

To allow an insecure agent to send traps to multiple
destinations, an additional party and a correspond-
ing additional access control entry are required for
each additional destination. These additional access
control entries have their aclTarget set to their cor-
responding additional party, but all of them have
initialPartyId.a.b.c.d.1 as their aclSubject.

The additional parties can be set up with null ad-
dresses (e.g., 0.0.0.0) at initialization time, and there-
fore there is still no need to support creation/deletion
for any tables in the Party MIB, and there is
no need for write-access to any object other than
partyTAddress. Since the first trap-destination is con-
figured as the address of initialPartyId.a.b.c.d.2,
one way to assign the OIDs for the additional par-
ties would be to use initialPartyId.a.b.c.d.12,

VOLUME 2, NUMBER 3 MAY/JUNE, 1993

The Simple Times 8

initialPartyId.a.b.c.d.22, and so on.
So, the additional configuration (per trap destination)

is:

partyIdentifier: initialPartyId.a.b.c.d.12
partyIndex: 12
partyTAddress: address for traps
partyLocal: false
partyAuthProtocol: noAuth
partyPrivProtocol: noPriv
partyStorageType: permanent

aclTarget (dest. party): 12
aclSubject (src party): 1
aclResources (context): 1
aclPrivileges: snmpV2-trap
aclStorageType: permanent

A Minimal Secure Agent

Now let’s look at a minimal secure agent, with a
single authenticated manager plus any number of other
managers which can access it using noAuth/noPriv
parties. To be secure it needs to implement MD5 (but
not DES). It also needs, as compared to the insecure
agent mentioned above, some additional configurations
and some additional support for the Party MIB.

These additional configurations are: two authenticat-
ed parties, an extra context for use by the authenticated
parties, and an extra access control entry to allow the
authenticated parties to access the extra context; these
would be the conventional initialPartyId.a.b.c.d.3

and initialPartyId.a.b.c.d.4 parties and the con-
ventional initialContextId.a.b.c.d.2 context. Also,
since unauthenticated managers will normally be given
less access rights than the authenticated manager, a
distinct MIB view is needed for each context; it is
appropriate that these be set up at installation time to
the view subtrees defined by convention for the context
accessible by unauthenticated parties.

In its support for the Party MIB, the secure agent need
not allow creation/deletion of entries in the partyTable,
the contextTable, or the aclTable; instead, all entries
in these tables can have a StorageType of permanent.
On the other hand, the creation/deletion of entries in the
viewTable is useful to allow the authenticated manager
to configure how much of the MIB is accessible by unau-
thenticated managers. (Since a minimal agent will not
support access control with instance-level granularity, it
should validate the creation of new view entries to ensure
that the OID of the specified view subtree is equal to, or a
substring of, the OID of at least one of the MIB objects it
supports.) Apart from the viewTable, where write access
to all columns is needed in order to support creation of

new entries, the subset of objects for which write access
should be supported is quite small:

� to set the trap destinations; partyTAddress,

� to tell the agent that the manager supports larger
response messages: partyMaxMessageSize; and,

� in support of MD5: partyAuthClock,
partyAuthPrivate, and partyAuthPublic

So, the additional configuration needed with an au-
thenticated manager is:

partyIdentifier: initialPartyId.a.b.c.d.3
partyIndex: 3
partyTAddress: a.b.c.d:161
partyLocal: true
partyAuthProtocol: md5Auth
partyPrivProtocol: noPriv
partyStorageType: permanent

partyIdentifier: initialPartyId.a.b.c.d.4
partyIndex: 4
partyTAddress: 0.0.0.0:0
partyLocal: false
partyAuthProtocol: md5Auth
partyPrivProtocol: noPriv
partyStorageType: permanent

contextIdentifier:
initialContextId.a.b.c.d.2

contextIndex: 2
contextLocal: true
contextViewIndex: 2
contextStorageType: permanent

aclTarget (dest. party): 3
aclSubject (src party): 4
aclResources (context): 2
aclPrivileges: get, get-next,

get-bulk, set
aclStorageType: permanent

As well as these additions, the aclPrivileges for the
previous access control entries would likely be reduced
to interrogation requests, view 2 would be set to the
internet subtree, and view 1 would initially be re-
stricted to the system, snmpStats, and snmpParties
subtrees.

A Secure Agent with Multiple Managers

Unlike noAuth/noPriv parties, a separate pair of parties
is needed for each manager which communicates with an
agent using md5Auth.

There are two reasons why separate parties are
needed. First, there is the potential for “clock leapfrog”

VOLUME 2, NUMBER 3 MAY/JUNE, 1993

The Simple Times 9

if multiple managers use the same pair of parties
concurrently; “clock leapfrog” occurs when clock synchro-
nization by one manager advances the clock and thereby
requires the other manager to clock synchronize, which
thereby requires the first manager to clock synchronize,
which thereby causes the other manager to . . . Second,
when a clock value reaches the maximum value, a
manager station reset the clock backward and change
the secret key in a single operation. This would be
problematic if multiple managers share parties and
therefore keys because there is no mechanism for the
multiple managers to exchange information about the
new keys.

For each such additional authenticated manager, a
secure agent needs additional configurations for: two ad-
ditional authenticated parties (one local and one remote),
an additional context (allows the different authenticated
managers to have different MIB views), and an addition-
al access control entry (to allow the additional parties
to access the additional context). At installation-time,
the additional parties can be set up with a StorageType
of permanent, having the same protocols, parame-
ters, and secrets as the initialPartyId.a.b.c.d.3

and initialPartyId.a.b.c.d.4 parties (i.e., as if they
had been cloned from those parties), but with a
RowStatus of notInService. This allows them to
exist (and remain undeleted since they are permanent)
in the table but to be unused until they are acti-
vated by setting their RowStatus to active. One
way to assign the OIDs for these additional par-
ties would be to use initialPartyId.a.b.c.d.13 and
initialPartyId.a.b.c.d.14 for the first additional
pair, initialPartyId.a.b.c.d.23 and
initialPartyId.a.b.c.d.24 for the second additional
pair, and so on.

Therefore, the creation and deletion of entries in the
partyTable, the contextTable, and the aclTable is not
required to be supported by a secure agent with multiple
managers. The creation and deletion of viewTable

entries is required, as is write access to the same subset
of objects in the Party MIB, as identified above for a
minimal secure agent. In addition, write access to
aclPrivileges is useful in order to alter the configu-
ration of which managers can issue set-requests.

So, the extra configuration needed per additional
authenticated manager is:

partyIdentifier: initialPartyId.a.b.c.d.13
partyIndex: 13
partyTAddress: a.b.c.d:161
partyLocal: true
partyAuthProtocol: md5Auth
partyPrivProtocol: noPriv
partyStorageType: permanent

partyIdentifier: initialPartyId.a.b.c.d.14
partyIndex: 14
partyTAddress: 0.0.0.0:0
partyLocal: false
partyAuthProtocol: md5Auth
partyPrivProtocol: noPriv
partyStorageType: permanent

contextIdentifier:
initialContextId.a.b.c.d.12

contextIndex: 12
contextLocal: true
contextViewIndex: 2
contextStorageType: permanent

aclTarget (dest. party): 13
aclSubject (src party): 14
aclResources (context): 12
aclPrivileges: get, get-next,

get-bulk, set

More Complicated Agents

After reading the above, you might now be wondering
whether any SNMPv2 implementations are required
to implement the full capabilities of the Party MIB.
Well, the answer is that proxy agents do need to
implement the full Party MIB, and SNMPv2 entities
acting in a dual role (e.g., those which implement the
Manager to Manager MIB) probably need to also. Agents
which support multiple local entities (e.g., repeaters and
bridges) may not require a full implementation, but
will certainly require additional contexts, and possibly
additional parties. In addition, those agents which wish
to provide the ability to send encrypted SNMP messages
will also need to implement DES, the corresponding
additional configurations, and write access to additional
MIB objects. Similarly, there are other capabilities
provided by the Party MIB which agents may wish to
provide by implementing the appropriate parts, such as
providing write access to contextLocalTime in order to
support the writing of values for use only after the next
reboot of the agent.

Standards
David T. Perkins

SNMPv2 IS HERE! SNMPv2 IS HERE! Yes, it’s worth
repeating. As predicted in the last issue, the documents
defining SNMPv2 have been published as RFCs and
are on the standards track at the Proposed level (the
first rung in the three level standards ladder). No

VOLUME 2, NUMBER 3 MAY/JUNE, 1993

The Simple Times 10

other documents have been published as RFCs since
the last issue; however, there are two in the pipeline
to be published: an updated version of the Network
Management Tool Catalogue; and, a MIB module for
MultiProtocol Interconnect over X.25. In addition, some
RFCs were moved to historic: RFC 1230, the Token
Bus MIB, due to lack of operational experience; and,
the previous SNMP security documents, RFC 1351, RFC
1352, and RFC 1353, due to the publication of SNMPv2
documents.

Recently Published RFCs

RFC 1441 - Introduction to SNMPv2 (Proposed Stan-
dard)
Presents an overview of the version 2 framework of the
Internet-standard Management Framework.

RFC 1442 - SMI for SNMPv2 (Proposed Standard)
Specifies how to define the operands of SNMP operations
using a subset of the Abstract Syntax Notation (ASN.1).
These operands are either management objects or no-
tifications. These definitions are grouped together in
ASN.1 modules which are called information modules.
An ASN.1 MACRO, MODULE-IDENTITY, is defined which
is used to identify and specify information such as
revision and author of information modules. Two other
ASN.1 macros, OBJECT-TYPE and NOTIFICATION-TYPE,
are defined which are used to concisely convey the syntax
and semantics of management objects and notifications.

RFC 1443 - Textual Conventions for SNMPv2 (Proposed
Standard)
Gives the definition of textual conventions and specifies
the initial set of textual conventions. Two of these,
DisplayString and PhysAddress, are known from RFC
1213, MIB-II. Additional ones are based on definitions
in existing SNMPv1 MIBs. The most important new one
is the RowStatus textual convention which requires 12
pages to define!

RFC 1444 - Conformance Statements for SNMPv2 (Pro-
posed Standard)
Defines three ASN.1 macros, OBJECT-GROUP,
MODULE-COMPLIANCE, and AGENT-CAPABILITIES, used to
group management objects, specify the minimally ac-
ceptable conforming implemenation of a MIB module,
and specify the actual implementation done in an agent.

RFC 1445 - Administrative Model for SNMPv2 (Proposed
Standard)
Overviews the framework used to provide authentication
and integrity, privacy, authorizations, indirect opera-
tions, and, control of unsolicited notifications. Also

defined is the format of messages between SNMPv2
entities. This mind-altering document is scheduled for
a non-technical re-write. The document is basically a
“quick turn” of RFC 1351.

RFC 1446 - Security Protocols for SNMPv2 (Proposed
Standard)
Gives the details of security in SNMPv2 based on the
MD5 digest algorithm for authentication and integrity,
and the DES algorithm for privacy. The threats, goals,
constraints, and, security services are first defined,
followed by the mechanisms to realize them. Included
are descriptions of solutions to operational concerns such
as clock and secret distribution, initial configuration,
clock synchronization, crash recovery, and recommended
practices. “Ported” from RFC 1352, this RFC is also in
need of an editorial revision.

RFC 1447 - Party MIB for SNMPv2 (Proposed Standard)
Defines the MIB objects needed to implement the ad-
ministrative framework of SNMPv2. This MIB consists
of four tables: for parties, contexts, access control,
and views. The party table identifies the source and
destination sources in SNMPv2 communications for the
agent. The context table consists of entries that either
identify a MIB family for a particular local entity, or
specify the parameters for a proxy relationship, while
the view table consists of families of collections of MIB
objects. Finally, the ACL table has entries for all
allowable combinations of source, destination, context,
and operation. Based on RFC 1353, it requires an
understanding of RFCs 1445 and 1446 before it can be
used.

RFC 1448 - Protocol Operations for SNMPv2 (Proposed
Standard)
Shows in ASN.1 and in textual elaborations the
format and interpretation of SNMPv2 Protocol Da-
ta Units (PDUs). (The format of the mes-
sages in which the PDUs are enclosed is speci-
fied in RFC 1445.) The SNMPv2 PDU types are:
get-request, set-request, get-next-request,
get-bulk-request, inform-request, response,
and, SNMPv2-trap.

RFC 1449 - Transport Mappings for SNMPv2 (Proposed
Standard)
Specifies how SNMPv2 maps onto an initial set of
transport domains. These are UDP (the preferred
choice), OSI CLTS, DDP, IPX, and proxy to SNMPv1.

RFC 1450 - MIB for SNMPv2 (Proposed Standard)
Contains the definitions of the MIB objects that describe
the behavior of an SNMP entity. These are basically a

VOLUME 2, NUMBER 3 MAY/JUNE, 1993

The Simple Times 11

cleaned up version of the SNMP objects from MIB-II.

RFC 1451 - Manager-to-Manager MIB (Proposed Stan-
dard)
Specifies a generalization of the MIB objects in the
RMON MIB used for detection and notification of events.
The alarm table is used to define the objects that are
being monitored, and the ID of their associated context.
The event table records occurrences of specified events,
while the event-notify table identifies the contexts asso-
ciated with each event.

RFC 1452 - Coexistence between SNMPv1 and SNMPv2
(Proposed Standard)
Shows how to map between SNMPv1 and SNMPv2
operations and management information definitions.

Road Map for SNMPv2 Documents

In total, the page count for the 12 RFCs that comprise
the SNMPv2 definition is over 400 pages! How is the best
way to read through these documents? First, remember
they are “reference” documents and are not “tutorial”
documents; hench, the reader should already under-
stand ASN.1, network management fundamentals, and
TCP/IP terminology. If the reader has a good grasp of
SNMPv1, then the SNMPv2 documents are just a next
step. Without this background, another source, such as
a book on SNMPv1, should be consulted first.

Of course, the Introduction to SNMPv2 document
should be read first. The next document to read
should be The Structure of Management Information
(SMI), but it is best to peek at the Protocol Operations
document to get preview of the operations that can
be performed on management information. The SMI
document is augmented by the the Textual Conventions
document. Reading of the Conformance Statements
document can be deferred until the reader is ready to
do “comparison shopping”. When products start to come
out, my journalist friends will be very interested in the
conformance statements — these specify the “minimal
requirements” for conformance and the “full disclosures”
for implementations. Now it is time to read over the
Protocol Operations document in detail, but don’t worry
if you don’t completely understand MIB views yet.

If you have gotten through the above documents,
congratulate yourself and take a break. You just finished
reading 135 pages.

Go get your favorite painkiller — aspirin, a pitcher
of a powerful alcoholic beverage, or a punching bag to
prepare for the next set of documents. These are the
Administration Model, Security Protocols, and the Party
MIB. If you like real tough brain teasers, get a copy of

RFC 1321 (the specification of MD5), and copies of the
documents describing DES. When you have finished with
these (and if they haven’t finished you), give yourself a
double pat on the back. You made through another 148
pages.

The SNMPv2 MIB, Transport Mappings, and Coexis-
tence documents are easy to read. They represent a fast
68 page read.

The last bump in the road is the Manager-to-Manager
(M2M) MIB. You can detour it if you want to finish
now. If not, go back and read the RMON MIB. This
puts you in the proper context to now read the M2M
MIB. The document should make sense if you understood
the Administrative Model document. (It describes the
determination of destinations of SNMPv2-traps and
inform-requests.) You got through this — the last
36 pages.

That’s the end of the “road map”. When the next issue
of The Simple Times comes out, the IETF will have been
on the road — traveling to Europe. In that issue, we’ll
report on the European reaction to the IETF standards
process.

Summary of Standards

SNMPv1 Framework (Full Standards):

� 1155 - Structure of Management Information (SMI);

� 1157 - Simple Network Management Protocol
(SNMP);

� 1212 - Concise MIB definitions; and,

� 1213 - Management Information Base (MIB-II).

SNMPv2 Framework (Proposed Standards):

� 1441 - Introduction to SNMPv2;

� 1442 - SMI for SNMPv2;

� 1443 - Textual Conventions for SNMPv2;

� 1444 - Conformance Statements for SNMPv2;

� 1445 - Administrative Model for SNMPv2;

� 1446 - Security Protocols for SNMPv2;

� 1447 - Party MIB for SNMPv2;

� 1448 - Protocol Operations for SNMPv2;

� 1449 - Transport Mappings for SNMPv2;

� 1450 - MIB for SNMPv2;

� 1451 - Manager-to-Manager MIB; and,

VOLUME 2, NUMBER 3 MAY/JUNE, 1993

The Simple Times 12

� 1452 - Coexistence between SNMPv1 and SNMPv2.

Full Standards:

� 1213 - Management Information Base (MIB-II).

Draft Standards:

� 1398 - Ether-Like Interface Type MIB.

Proposed Standards:

� 1229 - Extensions to the generic-interface MIB;

� 1231 - IEEE 802.5 Token Ring Interface Type MIB;

� 1239 - Reassignment of experimental MIBs to
standard MIBs;

� 1243 - AppleTalk MIB;

� 1253 - OSPF version 2 MIB;

� 1269 - BGP version 3 MIB;

� 1271 - Remote LAN Monitoring MIB;

� 1285 - FDDI Interface Type MIB;

� 1286 - Bridge MIB;

� 1289 - DECnet phase IV MIB;

� 1304 - SMDS Interface Protocol (SIP) Interface Type
MIB;

� 1315 - Frame Relay DTE Interface Type MIB;

� 1316 - Character Device MIB;

� 1317 - RS-232 Interface Type MIB;

� 1318 - Parallel Printer Interface Type MIB;

� 1354 - SNMP IP Forwarding Table MIB;

� 1368 - IEEE 802.3 Repeater MIB;

� 1381 - X.25 LAPB MIB;

� 1382 - X.25 PLP MIB;

� 1389 - RIPv2 MIB;

� 1406 - DS1/E1 Interface Type MIB;

� 1407 - DS3/E3 Interface Type MIB;

� 1414 - Identification MIB;

� 1418 - SNMP over OSI;

� 1419 - SNMP over AppleTalk; and,

� 1420 - SNMP over IPX.

Experimental:

� 1187 - Bulk table retrieval with the SNMP;

� 1224 - Techniques for managing asynchronously
generated alerts;

� 1227 - SNMP MUX protocol and MIB;

� 1228 - SNMP Distributed Program Interface
(SNMP-DPI); and,

� 1238 - CLNS MIB.

Informational:

� 1147 - A network management tool catalog;

� 1215 - A convention for defining traps for use with
the SNMP;

� 1270 - SNMP communication services;

� 1303 - A convention for describing SNMP-based
agents; and,

� 1321 - MD5 message-digest algorithm.

Historical:

� 1156 - Management Information Base (MIB-I)

� 1230 - IEEE 802.4 Token Bus Interface Type MIB;

� 1232 - DS1 Interface Type MIB;

� 1233 - DS3 Interface Type MIB;

� 1283 - SNMP over OSI;

� 1284 - Ether-Like Interface Type;

� 1298 - SNMP over IPX;

� 1351 - SNMP Administrative Model;

� 1352 - SNMP Security Protocols; and,

� 1353 - SNMP Party MIB.

Working Group Synopses
Frank J. Kastenholz

This column is a summary of activities. There is no
substitute for actually participating in a working group.
Even if you cannot go to the meetings, you can subscribe
to the mailing lists. Included in each working group’s
summary is the address of the group’s mailing list. To
subscribe, simply append “-request” on to the local-
part of the address. For example, the submission address
for the SNMP general discussion list is

VOLUME 2, NUMBER 3 MAY/JUNE, 1993

The Simple Times 13

snmp@psi.net

so to subscribe, you’d send a message to

snmp-request@psi.net

If you are interested in a group’s activities and do not
subscribe to the mailing list, you should!

SNMP General Discussion

Submissions: snmp@psi.net

A person posted a question asking about development
of an API for Microsoft Windows. The mailing list is
winsnmp@microdyne.com

Someone asked a question about the atTable. This
person pointed out that MIB-II defines the instance-
identification of the atTable to be atIfIndex and
atNetAddress, yet there is an additional numeric value
between the atIfIndex and atNetAddress components
of the instance-identifier. The response said that the
additional number is the type-code for atNetAddress, a
1 for IP-addresses in this case.

Someone asked how to add a row to a table with the
set-request. The answer that came back was to simply
set the variables of the row, and it should be created.
An additional question in this line was whether the
“read-only” variables should be set in this manner. These
variables should have DEFVALs set, or be derivable from,
e.g., the instance-identification of the row.

Someone asked how to design a table so that changes
made to the table do not take effect until the system
reboots. Some suggestions were to differentiate between
the “next-initialization” and “current operational” values
based on community strings, or on instance-identifiers
for tables, or to have separate tables.

Someone asked for guidance on how best to extend
the acceptable syntax for the SIZE clause for his freely
available MIB parser. Several examples were included
in the request. The gist of the extensions were to allow
multiple SIZEs to be specified. One response requested
that the changes be extended to INTEGERs as well.

A person asked about multi-management-protocol en-
vironments. This person will be adding some SNMP-
managed network devices into an environment that
has some systems managed with CMIP. A dual-protocol
manager solution was generally preferred.

There was an extensive discussion on auto-topology,
that is, determining network contents and structure
via SNMP and other network management tools. One
response asked that any auto-discovery processes de-
fault to OFF on manager stations, as large networks
may experience problems during installation if it is
enabled. This is primarily because these processes rely

on broadcasts of various types in various ways. This plea
was supported by many people. One person wondered
whether auto-discovery will work with SNMPv2, due to
its security features. If there are well-known, default,
parties, that allow minimum function and have noAuth
and noPriv, then SNMPv2 is not a problem. In general,
this led to the notion that a standard, default, access
policy be available in all boxes so that they do not
need to be configured to be discovered. This would be
equivalent to having a community string of “public” in
SNMPv1. The use of a well-known multicast address
in this context was also discussed. One tool, used in
a commercial product, is a “comprehensive ping” which
goes through all IP addresses in a given range and
pings them. If an answer comes back, a device has
been discovered. Other tools will extend this, looking
at MIB tables (ARP, routing, interfaces, etc.) and so
on, and attempt to deduce the network structure (as
opposed to merely inventorying devices) based on the
results. A user mentioned a package called Fremont
that attempts to do several auto-discovery function-
s. A paper is available at ftp.cs.colorado.edu in
pub/cs/techreports/schwartz/ASCII/Fremont.txt.Z

It was pointed out that not all systems support SNMP, so
the results are, at best, inconclusive. Another possible
strategy is to “snoop” on the network, and examine the in-
teresting packets (such as routing, ARP, 802.1 Spanning
tree, and so on). It was pointed out that, as encryption
(not just of SNMP packets) becomes more commonplace,
snooping into packets becomes more problematic. The
difference between auto-discovery (determining which
nodes were on the network) and auto-topology (deducing
network structure) was elaborated on. However, the
first seems to be a pre-requisite for the second. One
person pointed out that there are many degenerate
protocols and configurations in networks and that any
good auto-topology system must be able to make sense
out of them. The needs of security (which wishes to
prevent unknown unauthorized people from doing bad
things) were discussed, in light of discovery procedures,
which require relatively open access to as many systems
and MIB objects, by potentially unknown managers, as
possible.

Someone asked about mapping the IP Address table,
which identifies a single interface for the IP Address,
to bridges, which have multiple “interfaces” but one
address. One response was to consider the IP “interface”
as a virtual interface, layered on top of the bridge and
all of its real interfaces. A second approach mentioned
was to simply pick one of the bridge interfaces as the IP
interface.

Someone had a question about the design of tables.
This person was designing a table for an interface and

VOLUME 2, NUMBER 3 MAY/JUNE, 1993

The Simple Times 14

had to have an “interface” and then a channel within that
interface. The person wanted to know how to design this
sort of “table within a table”. The answer was to have two
tables, one containing information just for the interface
and indexed by the interface number, and the second
containing information on the channels and indexed by
interface and channel numbers.

Someone asked if there were repositories of just the
ASN.1 source of the MIBs (instead of having to manually
remove all of the non-ASN.1). A package called mstrip
was offered as a solution to this problem (it is available
from ftp.synoptics.com as a part of the SMIC package).

A discussion about strategies for re-sending
set-requests was held. The question arises of what
to do when the get-response to a set-request is not
received. Did the set-request fail to get to the agent,
or was the set successful and the response lost? It was
claimed that a manager has no way of telling. Simply
resending the original set-request could be a problem
if the request maps onto some action and the manager
truly wants the action to occur only once (e.g., “send $100
to Jim”). Resending the set-request with the same
request-id and relying on the agent to ignore requests
with “previously seen” request-ids was suggested. It
was pointed out that this was not a behavior specified in
the protocol. It would also place additional burdens on
the agent in that it would have to save additional SNMP
state (some point out that SNMPv2, with RowStatus, is
moving away from this model). Another suggestion was
to get the variable that was set and see if it had the
“new” or “old” value in it, resending the set-request
if it had the old value. However, this does not allow
“at-most-once” semantics, though intelligent MIB design
(i.e., design objects as “set state off or on” instead of
“toggle state”). Also, additional MIB objects could be
created that allow for such semantics (e.g., timestamps
and so on). The possibility of multiple manager stations
acting like Laurel and Hardy (one constantly turning
something off, the other constantly turning it on) was
raised. Locking was also suggested as a mechanism
to deal with this, as was the TestAndIncr textual
convention of SNMPv2. A long and heated discussion
of the merits of locking was held — one person felt
that locking was the answer to the problem, no on else
publicly agreed.

Someone asked which MIB groups a 10BaseT hub
should support. Several MIB groups were enumerated as
likely candidates, system, interface, snmp, along with
the Hub and Ethernet-like MIB modules. In addition,
since the hub is probably using UDP for SNMP, the udp,
ip, and icmp groups should also be implemented.

Someone asked a question about BER encoding of
unsigned integers. The response was that BER, and

ASN, do not have the concept of unsigned integers,
so encoding unsigned values must be done as if they
were signed. Thus, 0xffffffff should be encoded as
0x020500ffffffff.

Someone asked about whether there is a working
group to design a MIB for SONET equipment. The
AToM working group is responsible for developing this
(see below).

Someone asked whether an agent is allowed to silently
discard requests that overflow internal buffers. Several
polite things were suggested (e.g., send a trap, or
increase your buffer size), but no one said it was illegal.
It was noted that most all conditions that could cause a
packet to be lost within the agent (no buffers, bad UDP
checksum, etc.) are counted, so the proper counter, at
least, should be incremented.

Someone asked about encoding Asian languages in
DisplayStrings; specifically, ignoring or relaxing the
“printable ASCII” part of its definition. One answer was
that you could place UNICODE in OCTET STRINGs.

Someone asked whether it is legal to index a table
other than the ifTable with ifIndex. The answers that
came back all said yes.

A question was asked about how to demultiplex SNMP
requests that are sent to a device when that device
contains multiple virtual devices. (This is not the same
situation as a chassis, where the chassis contains several
real physical devices — in this case, each physical device
is instantiated entirely in software.) The answer that
was posted indicated that this is identical to a proxy
relationship; that, in fact, the proxied-for side of a proxy
relationship can be virtual.

There was the usual flamefest, carried out on several
mailing lists, about whether SNMPv2 is a good thing
or not, and whether the SNMPv2 working group should
be disbanded or not, and EXACTLY how many pages
are in the SNMPv2 specifications (versus the SNMPv1
specifications). It was greatly amusing to watch oth-
erwise respectable members of the community descend
in their arguments to a level that could only have been
pre-planned, since the absurdity, innuendo, invective,
and gratuitous ad hominem personal attacks could not
have occurred by accident.

A question was asked if the length of OIDs is limited
to 64 bytes in SNMPv1 or not. The responses indicated
that some MIB compilers, OID printing routines, agents
and manager stations might have implementation limits,
and that one might wish to limit one’s OID lengths for
safe interoperability, but there is no limit in the protocol
specifications.

Someone asked if there is a MIB for managing OS/2
systems. One was posted to the list.

Someone expressed concern over the IP-centricity

VOLUME 2, NUMBER 3 MAY/JUNE, 1993

The Simple Times 15

of SNMP, and that, since most SNMP managers use
UDP/IP, then to be manageable, a device needs UDP/IP,
which carries its infrastructural needs with it (ICMP,
ARP, configuration, and so on). It was pointed out that
use of a common underlying protocol suite enhances
ubiquity.

Someone asked whether there is a perl interpreter
with SNMP support built into it. Several answers came
back, describing a package called snmperl, available in
many different places.

Someone asked when reference implementations of
SNMPv2 would be available from CMU or 4BSD/ISODE.
One of the principals of these efforts said that they should
be available by the end of May.

As usual, several people insisted on carrying out the
same conversation on both the SNMP and SNMPv2
mailing lists. I’ve reported these conversations on only
one of the lists, however.

Someone posted a message seeking the SunNet
Manager files necessary to manage an HP9000 sys-
tem. They were pointed to a general repository of
such MIB modules, available for anonymous FTP at
zippy.telcom.arizona.edu in /pub/snmp/agents

Appletalk/IP Working Group

Submissions: apple-ip@cayman.com

No SNMP-related traffic to report.

AToM MIB Working Group

Submissions: atommib@thumper.bellcore.com

This is a new working group. The mailing list started
with discussions on ATM connection management, the
relationship between the working group’s charter and
the work done by the ATM Forum on ILMI (interim link
management), and service management.

BGP Working Group

Submissions: iwg@ans.net

No SNMP-related traffic to report.

Bridge MIB Working Group

Submissions: bridge-mib@nsl.dec.com

A call was posted to the mailing list for implementation
experience in preparation for a review of the standard-
ization status of the MIB by the IESG. Several responses

were directed to the mailing list, presumably others were
sent privately.

One person requested information on algorithms that
may be used to analyze the locations of nodes on a bridged
LAN. A detailed algorithm was posted in response.

An announcement of an Internet-Draft for source-
routing bridges was posted. Some minor errors were
pointed out.

An announcement for a new version of the original
MIB was posted. This version was sent to the IESG
for review for advancement to Draft Standard status.
The changes to the MIB, as compared to the Proposed
Standard version, were all boilerplate.

Character MIB Working Group

Submissions: char-mib@decwrl.dec.com

The working group was re-activated to evaluate RFCs
1316–1318 (currently proposed standards) with respect
to the standards track.

Chassis MIB Working Group

Submissions: chassismib@cs.utk.edu

The minutes from the working group meeting at the
Columbus IETF were posted.

An intense and detailed discussion was held about
mapping between entities and resources. A problem
was pointed out in that the original model could not
handle the case where a resource (e.g., an interface) was
used by multiple entities (e.g., a bridge and a router).
It was suggested that this was a common configuration
and ought to be supported. A long response, along with
several examples, indicated that this was not a problem
and that the original poster was slightly confused. This
discussion was too voluminous and detailed to easily
summarize in this column.

The MIB went through several “on-the-list” revisions,
with new versions posted to the list, along with requests
for clarification of various parts, and modification and
revision requests.

DECnet Phase IV MIB Working Group

Submissions: phiv-mib@jove.pa.dec.com

The working group was re-activated to evaluate RFC
1289 (currently a proposed standard) with respect to the
standards track.

VOLUME 2, NUMBER 3 MAY/JUNE, 1993

The Simple Times 16

Ethernet MIB Working Group

Submissions: enet mib@ftp.com

The Ethernet MIB mailing list has been fairly quiet. The
only recorded activity was a question about how to get
numbers for the ifExtnsChipSet object. The questioner
raised a point that one vendor was not represented in
the list presented in the MIB. These numbers are OBJECT
IDENTIFIERS and as such may be assigned out of any OID
subtree. For vendors whose parts are not represented in
the MIB, the recommended practice is to get an OID from
IANA out of the enterprises subtree, and then allocate
OIDs to represent their parts from that branch.

A new working group, the Interfaces MIB working
group, has been formed to deal with advancing the
Ethernet MIB further in the standards track. Most
discussion of the Ethernet MIB in the future will
probably occur on that working group’s mailing list (see
below).

FDDI MIB Working Group

Submissions: fddi-mib@cs.utk.edu

The working group continued development of a MIB
that corresponds to X3T9.5’s SMT version 7.3. A draft
of this MIB has been developed and posted to the
Internet-Drafts repository.

Someone asked about the ranges for FddiTimeNano

and FddiTimeMilli. The questioner noted that the
ranges are specified as signed 32–bit quantities and
asked whether they should be unsigned instead. The
response was that INTEGERs are defined as being 32–bit
signed quantities so the range for these objects properly
is 0..2147483647.

A question was raised about the accuracy of
fddiSMTTimeStamp and fddiSMTTransitionTimeStamp,
which are defined as 64–bit, 80ns counters in the
SMT specifications. The MIB defines these as 32–bit,
millisecond counters. The response was that the working
group had discussed the matter at some length and this
accuracy was deemed acceptable.

Frame Relay Service MIB Working Group

Submissions: frftc@nsco.network.com

This is a new working group.

Host Resources MIB Working Group

Submissions: hostmib@andrew.cmu.edu

Several syntax errors in the Internet-Draft were pointed
out. Several clarifications were also requested. A final
plan of action to finish off the MIB was posted.

IEEE 802.3 Hub MIB Working Group

Submissions: hubmib@synoptics.com

A revised version of the MAU mib was posted to the
mailing list.

Minutes of the working group’s meeting at the Colum-
bus IETF were posted.

Someone asked why rptrMonitorPortRunts is not in-
cluded in the rptrMonitorPortTotalErrors error sum-
mary. The answer was that runts are considered normal
network events. Furthermore, runts occur at a very
high frequency, relative to other errors, so the runt count
would drown out the count of true errors.

IDPR Working Group

Submissions: idpr-wg@bbn.com

No SNMP-related traffic to report.

IDRP for IP Working Group

Submissions: idrp-for-ip@merit.edu

No SNMP-related traffic to report.

Interfaces MIB Working Group

Submissions: if-mib@thumper.bellcore.com

This is a new working group.

IPLPDN Working Group

Submissions: iplpdn@nri.reston.va.us

No SNMP-related traffic to report.

IS-IS Working Group

Submissions: isis@merit.edu

No SNMP-related traffic to report.

Mail and Directory Management Working Group

Submissions: ietf-madman@innosoft.com

This is a new working group. There was considerable
discussion on whether defining managed objects for mail

VOLUME 2, NUMBER 3 MAY/JUNE, 1993

The Simple Times 17

gateways was within the scope of the working group.
There was also considerable discussion on possible
liaison with ANSI X3. Neither topic was resolved.

Modem Management Working Group

Submissions: modemmgt@telebit.com

This is a new working group. There was considerable
discussion on objects already defined by the CCITT for
the purpose of modem management.

NOCtools Working Group

Submissions: noctools@merit.edu

No SNMP-related traffic to report.

OSPF Working Group

Submissions: ospfigp@gated.cornell.edu

No SNMP-related traffic to report.

PPP Working Group

Submissions: ietf-ppp@ucdavis.edu

The PPP Working group has settled on the four mibs
(LCP, IPCP, Bridging, and Security) that have been in
development. Final versions of the MIBs were posted
to the mailing list. There were some minor comments
requesting clarifications. The most significant was in
determining what values to return for MIB objects for
which no value is available until after negotiations with
the peer have completed. The working group decided to
have the values of these objects be undefined until the
link is up, and text to that effect has been added to the
MIBs.

The documents were forwarded to the IESG for review
and standardization.

RIP Working Group

Submissions: ietf-rip@xylogics.com

Some possible implementation problems with the MIB
were pointed out.

Interfaces are referenced in the MIB by their IP
addresses. However, a capability of BSD UNIX is to
have point-to-point interfaces share an address with a
non-point-to-point interface (such as Ethernet). As the
RIP MIB is specified, multiple interfaces with the same
address would have to be reported.

RIPv2’s Domains allow multiple Domains to be run on
a single interface, allowing different subsets of routers
to be reached with each domain. The MIB does not
support this. The note suggested that rip2IfConfDomain
be added to the INDEX clauses of rip2IfConfTable and
rip2IfStatTable.

Remote Monitoring (RMON) Working Group

Submissions: rmonmib@jarthur.claremont.edu

Some problems implementing the History Group with
certain hardware were pointed out. Specifically, this
particular controller only reports collisions on packets
that it actually attempts to transmit, and that the gen-
eral implementation must do a lot of work to ensure that
error type information is correlated with the received,
errored packet; in fact, it might be necessary to stop
the adaptor card after each packet, while the necessary
information is recorded.

Documentation for one RMON implementation was
announced. This documentation can be obtained from
dnpap.et.tudelft.nl in
/pub/btng/rmon-develop.tar.Z. Several people en-
gaged in a review and discussion of the document on
the mailing list.

A brief discussion was held regarding what to do when
you cannot support the semantics of a particular object
(e.g., the interface card does not count a certain type
of event). It was pointed out that the wrong answer
(though commonly implemented) was to return 0; the
correct thing to do is to not implement the variable and
return noSuchName when the variable is requested. The
correct solution also prevents one from claiming that one
has implemented the MIB.

One person asked whether the counters in the ring
station table should be reset to 0 when the entry goes
from active to inactive or forcedRemoval, and then
back to active. Some people wish to see the counters
set to 0, since this way they reflect an accurate count
of what happened since the station entered the ring. It
was pointed out that counters have no defined starting
value, so a manager station cannot rely on the counters
starting at 0. Also, resetting the counters in this way
would break with precedent; the manager station should
probe the table often enough to detect the condition. The
mailing list discussions seemed to prefer the latter (do
not reset) options.

Development of an RMON Compatibility Test Suite,
as a graduate student project, was announced. A set
of basic tests was listed and additional input solicited.
Most of the functions were actually testing the SNMP
functions associated with the MIB, such as making sure

VOLUME 2, NUMBER 3 MAY/JUNE, 1993

The Simple Times 18

that get-next would get table entries in the correct
order, and so on. Additional “weird” OIDs were suggested
such as too-short, too-long, and non-existent. It was
pointed out that the suite did not actually test the
RMON functions, and that such tests should be done.
Performance tests were also suggested.

A question was asked concerning the filter matching
algorithm. Suppose the filter mask is “L” bytes long and
only the first “M” bytes of the mask contain any one bits
(M < L). If a received packet is less than L bytes long (but
greater than or equal to M bytes long) and the packet
matches the filter pattern identified by the first M bytes
of the mask, should the packet be accepted? Citing the
following text of RFC 1271, most people claim that the
packet should not be accepted:

“If the packet is too short and does not have data
corresponding to part of the filterPktData, the
packet will fail this data match.”

One dissenting opinion claimed that sending the “trailing
zeros” might simply be a matter of laziness on the part of
the manager station, that these zeros should be removed
from the mask, and therefore the packet accepted.

Someone asked whether hostOutPkts,
hostOutOctets, hostOutErrors, matrixSD(DS)Pkts,
matrixSD(DS)Octets, and matrixSD(DS)Errors should
be updated if a packet has a CRC error. The general
consensus was that bad packets should not be used to
instantiate new rows of the table, but updating existing
entries would be acceptable. If the addresses of the bad
packet are already in the table, then it is very probable
that the addresses of the bad packet are correct (the error
was someplace else in the packet).

Quite a discussion was held on the usefulness of
attempting to attribute bad packets to specific source
addresses. It was suggested that even though there is
less than 100% reliability in this attribution, attempting
to use the source address to determine the locus of the
error packet’s source would be useful to help determine
if the problem was due to bad hosts, bad packet switches,
bad wiring, and so on.

A question was asked, regarding TR-RMON, whether
Spanning Tree BPDUs should update
sourceRoutingStatsSingleRoutesBroadcastFrames

and
sourceRoutingStatsSingleRoutesBroadcastOctets.
One person responded yes.

Another person asked whether there was an FDDI
RMON MIB. The response was that the working group’s
current tasks are finishing the token-ring RMON MIB,
advancing current MIBs in the standards track, and then
addressing “RMON-II”, which would involve a higher
level of statistics.

SNA DLC Services MIB Working Group

Submissions: snadlcmib@apertus.com

This is a new working group. A call for enterprise-specific
MIB modules in this area was made.

SNA NAU Services MIB Working Group

Submissions: snanaumib@thumper.bellcore.com

This is a new working group. A call for enterprise-specific
MIB modules in this area was made.

SNMP Security Working Group

This mailing list has been terminated, with its activity
moved to the SNMPv2 working group’s mailing list.

SNMPv2 Working Group

Submissions: snmp2@thumper.bellcore.com

A major discussion was held about export restrictions
of DES and security technology in general. There was
a lot of talk, with all the obligatory references to the
boyz with sunglasses, trench-coats, and short haircuts,
incompetent bureaucrats, and so on. Not a lot was
said, however, which, this author supposes, is typical for
discussions on security technology and the law. Export
of encryption technology from the US, and many other
countries (primarily those in the COCOM regime), is
controlled. How does this affect the DES component of
SNMPv2? First and foremost, DES is not required for
SNMPv2. Second, it was pointed out by some people that
DES implementations are available outside of the US,
though several of the implementations are in COCOM
countries, and presumably export from those countries
is also controlled. One person pointed out that leaving
“hooks” in which one could insert controlled technology
is also against the COCOM rules. It was pointed out that
the COCOM rules cover not only exporting of software;
but also boxes containing embedded controlled software,
for example, a router containing SNMPv2 with DES
would be subject to control. One poster pointed out that
the US/COCOM restrictions vary according to both the
use of the cryptographic technology (it’s generally easier
to get a license for authentication than for privacy), and
the destination.

The author would like to point out that anyone contem-
plating exporting SNMPv2, or SNMPv2-bearing devices,
containing security code (authentication and/or privacy)
should investigate the matter with legal counsel. The
exact rules and procedures in each country are different,

VOLUME 2, NUMBER 3 MAY/JUNE, 1993

The Simple Times 19

and you should know what you are doing before you do
it.

Someone asked what “serialization” means. The
answer is that it means the “encoding of ASN.1 specified
data according to the Basic Encoding Rules”.

A person asked about whether an API to SNMP should
be synchronous or asynchronous. A response said that
some agent systems had relatively slow response times
(on the order of seconds) and it would not be good
to tie up a manager station waiting for a response.
Another respondent pointed out that the Windows SNMP
API specification currently being developed has both
synchronous and asynchronous interfaces.

A major flamefest was held on the SNMPv2 mailing
list, cross-posted to the IETF list about whether SNMPv2
was good or not, and whether it was forced down the
throats of the IETF. The discussion included whether
security was a “good thing” or not. This author found it
uproariously funny that one of the main protagonists in
this discussion was one of the original people who, a year
ago, made the strong arguments that: 1) there should be
one transition, from SNMPv1 to SNMPv2 with security;
and, 2) we need to have a tightly-focused working group
to address these issues. In effect, the complaint was that
we got what we asked for.

An intense discussion on whether instance granularity
in views is a “good thing” or not. The computational
burden of enforcing this granularity was questioned. It
was pointed out that an agent could simply refuse to do
instance granularity (or any other level of granularity,
for that matter) by rejecting attempts to create such
views with the appropriate SNMPv2 error codes. It was
pointed out that, if an agent allows a view to be created
with a certain level of granularity, then that agent must
enforce that granularity in subsequent operations.

A discussion was held on whether any form of party-
changed notifications is desirable. This could be a trap,
or simply timestamping the party table entries with
sysUpTime when the entry was last changed. A plea,
which no one disagreed with, was posted for thinking
carefully about these issues before making any changes.

TCP Client Identity Protocol

Submissions: ident@nri.reston.va.us

No SNMP-related traffic to report.

Token Ring Remote Monitoring Working Group

Submissions: rmonmib@jarthur.claremont.edu

See RMON above.

Trunk MIB Working Group

Submissions: trunk-mib@saffron.acc.com

No SNMP-related traffic to report.

Uninterruptable Power Supply Working Group

Submissions: ups-mib@cs.utk.edu

A discussion ensued on whether it is acceptable to return
0 for unsupported objects. The answer is NO, return
noSuchname instead.

A main item of discussion was the upsBattery group,
with many of the objects receiving intense scrutiny
by the working group members. Some of the issues
raised were: 1) it is difficult to get meaningful, reliable,
information out of the data presented by some of the
objects in the group since the underlying phenomenon
being measured can only be estimated, with unknown
accuracy; 2) some of the objects, reflecting ambient
environmental conditions, may vary in the quality of
the information they provide since the sensors providing
the raw data may be placed at different locations from
one vendor (or model) to the next, and therefore may
measure slightly different environments; and, 3) some
objects require manual maintenance and, lacking such
maintenance, might give a false sense of security.

A strawman proposal for the input group was posted
to the list. The usefulness of upsInputBlockouts was
discussed, as were issues relating to determining the
voltages on the input.

A proposal for an alarm group was posted to the mail-
ing list. The definition of upsAlarmStopNoticeIssued

was briefly discussed in relation to this group. The
syntax of upsAlarmId was changed to reflect the fact that
INTEGER objects are 32–bit signed numbers. Most, if not
all, of the alarms were reviewed and analyzed in far too
great a detail to go into in this column.

A strawman for the output group and bypass group
was posted.

X.25 MIB Working Group

Submissions: x25mib@dg-rtp.dg.com

No SNMP-related traffic to report.

Activities Calendar

� INTEROP August 93
August 23–27, San Francisco, CA
For information: +1 415–941–3399

VOLUME 2, NUMBER 3 MAY/JUNE, 1993

The Simple Times 20

Publication Information

The Simple Times is published with a lot of help from
the SNMP community.

Publication Staff

Coordinating Editor:
Dr. Marshall T. Rose Dover Beach Consulting, Inc.

Featured Columnists:
Dr. Jeffrey D. Case SNMP Research, Inc.

University of Tennessee
Frank J. Kastenholz FTP Software, Inc.

Keith McCloghrie Hughes LAN Systems, Inc.
David T. Perkins SynOptics Communications, Inc.

Steven L. Waldbusser Carnegie Mellon University

Contact Information

Postal: The Simple Times
c/o Dover Beach Consulting, Inc.
420 Whisman Court
Mountain View, CA 94043–2186

Tel: +1 415–968–1052
Fax: +1 415–968–2510

E-mail: st-editorial@simple-times.org

ISSN: 1060–6068

Submissions

The Simple Times solicits high-quality articles of tech-
nology and comment. Technical articles are refereed to
ensure that the content is marketing-free. By definition,
commentaries reflect opinion and, as such, are reviewed
only to the extent required to ensure commonly-accepted
publication norms.

The Simple Times also solicits terse announcements
of products and services, publications, and events. These
contributions are reviewed only to the extent required to
ensure commonly-accepted publication norms.

Submissions are accepted only in electronic form. A
submission consists of ASCII text. (Technical articles
are also allowed to reference encapsulated PostScript
figures.) Submissions may be sent to the contact address
above, either via electronic mail or via magnetic media
(using either 8-mm tar tape, 1

4 -in tar cartridge-tape, or
3 1

2 -in MS-DOS floppy-diskette).
Each submission must include the author’s full name,

title, affiliation, postal and electronic mail addresses,
telephone, and fax numbers. Note that by initiating
this process, the submitting party agrees to place the
contribution into the public domain.

Subscriptions

The Simple Times is available via electronic mail in
three editions: PostScript, MIME (the multi-media 822
mail format), and richtext (a simple page description
language). For more information, send a message to

st-subscriptions@simple-times.org

with a Subject line of

help

In addition, The Simple Times has numerous hard-
copy distribution outlets. Contact your favorite SNMP
vendor and see if they carry it. If not, contact the
publisher and ask for a list. (Communications via e-mail
or fax are preferred).

VOLUME 2, NUMBER 3 MAY/JUNE, 1993

