
The Simple TimesTM

THE BI-MONTHLY NEWSLETTER OF SNMP TECHNOLOGY, COMMENT, AND EVENTSSM

VOLUME 2, NUMBER 1 JANUARY/FEBRUARY, 1993

The Simple Times is an openly-available publication
devoted to the promotion of the Simple Network Man-
agement Protocol (SNMP). In each issue, The Simple
Times presents: a refereed technical article, an industry
comment, and several featured columns. In addition,
some issues include brief announcements, summaries
of recent publications, and an activities calendar. For
information on submissions, see page 20.

In this Issue:

Technology and Commentary
Technical Article : : : : : : : : : : : : : : : : : : : 1
Industry Comment : : : : : : : : : : : : : : : : : 5

Featured Columns
Applications and Directions : : : : : : : : : : : : 6
Ask Dr. SNMP : : : : : : : : : : : : : : : : : : : : 7
Security and Protocols : : : : : : : : : : : : : : : 8
Standards : : : : : : : : : : : : : : : : : : : : : : 9
Working Group Synopses : : : : : : : : : : : : : : 11

Miscellany
Activities Calendar : : : : : : : : : : : : : : : : : 19

Publication Information 20

The Simple Times is openly-available. You are free
to copy, distribute, or cite its contents. However, any
use must credit both the contributor and The Simple
Times. (Note that any trademarks appearing herein are
the property of their respective owners.) Further, this
publication is distributed on an “as is” basis, without
warranty. Neither the publisher nor any contributor
shall have any liability to any person or entity with
respect to any liability, loss, or damage caused or alleged
to be caused, directly or indirectly by the information
contained in The Simple Times.

The Simple Times is available via both electronic-
mail and hard-copy. For information on subscriptions,
see page 20.

Technical Article
Samuel M. Roberts, Farallon Computing, Inc.

In this issue: An Introduction to SNMP MIB Compilers

An SNMP MIB compiler is an extremely useful tool, not
only for authors of SNMP MIBs, but also for implemen-
tors of SNMP agents and users of SNMP management
applications. In addition to verifying the syntactic
correctness of a MIB, a MIB compiler can automatically
generate data structures and code required by an agent
to implement a particular MIB. A MIB compiler can also
make information about managed objects in proprietary
vendor MIBs or new Internet-standard MIBs available
to a management application.

This article provides an introduction to SNMP MIB
compilers. It begins with a description of the function
that a MIB compiler performs. It then examines the
internal structure of a typical MIB compiler and provides
an overview of some of the more common output formats
produced by SNMP MIB compilers. Finally, the article
concludes with a section describing a number of openly-
available and commercial MIB compilers.

What is a MIB Compiler?

A compiler is a program that translates a program
written in one language — the source language — into
an equivalent program in another language — the
target language. Typically, the source language is a
high-level programming language, such as C or Pascal,
while the target language is a low-level programming
language, such as a particular target platform’s assembly
or machine language.

The source language for a MIB compiler is the lan-
guage Abstract Syntax Notation One (ASN.1). ASN.1
is not a programming language; it is a language for
describing structured information. ASN.1 resembles the
data declaration portion of a high-level programming
language. The input to a MIB compiler isn’t a program,
but rather a collection of MIB modules written in a
subset of ASN.1. These MIB modules contain definitions
of managed objects that correspond to information in
network devices that can be manipulated via SNMP.



The Simple Times 2

MIB compilers usually generate various alternate
representations of the managed object definitions in the
input MIBs. These alternate representations are easier
for management applications and agents to process than
the ASN.1 representation.

Some alternate representations are actually data
structure declarations in a high-level programming lan-
guage, such as C, that can be compiled and linked into
a management application or agent. Others are data
files containing “flat” representations of the managed
object definitions that can be read into memory by a
management application or agent at run-time.

In some cases, MIB compilers output code to assist in
the implementation of the input MIBs. For example,
a MIB compiler may generate skeleton routines for
retrieving or setting the value of a managed object, or
routines to generate particular SNMP Trap-PDUs.

Structure of a MIB Compiler

Despite the fact that a MIB compiler accepts input
written in a data description language rather than a
programming language, it is similar in structure to a
programming language compiler. It typically consists of
a front-end and one or more back-ends. The front-end
reads input files containing ASCII text corresponding
to ASN.1 MIB modules and constructs an internal
representation of the information contained in the MIB
modules. The back-end produces one or more output files
from this internal representation.

The front- and back-ends of the MIB compiler may
be totally independent applications that communicate
by means of an intermediate file on disk, or they
may be individual modules of a single application that
communicate by means of shared data structures in
memory.

Although most MIB compilers are implemented as
stand-alone programs and generate output files on disk,
a MIB compiler may sometimes be integrated directly
into a network management application (or even an
agent). In this case, the MIB compiler consists only of a
front-end and no back-end, and the MIB compiler does
not produce an output file. Instead, the management
application makes direct use of the internal representa-
tion constructed by the front-end from the ASN.1 MIB
modules.

The Front-end

The front-end of a typical MIB compiler consists of a
lexical analyzer, a syntactic analyzer, and a semantic
analyzer, together with support routines such as symbol
table management and error handling routines. The

lexical analyzer, or scanner, reads the sequence of ASCII
characters in the input files and groups them together
into a sequence of tokens. Tokens are the basic lexical
units of ASN.1. There are keyword tokens, such as
“BEGIN” and “END”, punctuation tokens such as “::=”
and “..”, identifier tokens such as “iso”, and numeric
tokens such as “255”.

The syntax analyzer, or parser, takes the tokens
produced by the scanner and groups them together
into syntactic structures according to the ASN.1 gram-
mar. The token stream produced by the scanner must
consist entirely of one or more instances of ASN.1’s
ModuleDefinition syntactic structure; otherwise the
input contains syntax errors and the parser generates
appropriate error messages. For example, the parser
would recognize the following sequence of tokens

INTEGER {
up(1),
down(2),
testing(3)

}

as a syntactically correct instance of the IntegerType
syntactic structure using the following Backus-Naur
Form (BNF) productions (or rules) from the ASN.1
grammar:

IntegerType ::=
INTEGER

| INTEGER "{" NamedList "}"

NamedList ::=
Named

| NamedList "," Named

Named ::=
identifier "(" Signed ")"

Signed ::=
number

| "-" number

To see that the previous sequence of tokens is indeed an
instance of the IntegerType syntactic structure, it is
helpful to construct a diagram called a parse tree. A
parse tree exhibits the syntactic structure of a particular
sequence of tokens.

VOLUME 2, NUMBER 1 JANUARY/FEBRUARY, 1993



The Simple Times 3

The parse tree for the previous example is as follows:

IntegerType

INTEGER “f” NamedList “g”

“,” Named

id.
“testing”

“(” Signed
number

“3”

“)”

NamedList

“,” Named

id.
“down”

“(” Signed
number

“2”

“)”

NamedList
Named

id.
“up”

“(” Signed
number

“1”

“)”

The semantic analyzer takes the output of the parser
and checks it for semantic correctness. Semantic
analysis deals with those aspects of ASN.1 that cannot be
specified by means of a grammar, but instead depend on
context. Even though a particular sequence of tokens
may be syntactically correct according to the ASN.1
grammar, it may not be legal ASN.1. For example, the
sequence of tokens

MyType ::= INTEGER

is always a syntactically correct instance of a
TypeAssignment. However, depending on the context
in which this TypeAssignment appears, it may not be
semantically correct. For example, it would be semanti-
cally incorrect if the enclosing MIB module contained a
prior assignment to the type identifier MyType.

The lexical, syntactic, and semantic analyzers each
make use of various support routines, including error
handling and symbol table management routines. Error
handling routines generate error messages for the user
when there is an error in the input to the compiler.
Errors can be generated at any phase of the compilation.
For example, the scanner will generate an error if it
encounters a character that cannot be part of any ASN.1
token, such as an at-sign, or an improperly formed token,
such as an identifier that ends with a hyphen. The

syntax analyzer will generate an error if it encounters
a sequence of tokens that isn’t valid according to the
ASN.1 grammar, such as a comma in the middle of an
OBJECT IDENTIFIER value. The semantic analyzer will
generate an error if it detects a semantic error, such as
a conflict between the syntax specified for an object in a
SEQUENCE definition and a later OBJECT-TYPE definition.

Symbol table management routines keep track of the
names used in the MIB modules being compiled and
record essential information about each name, such as
its type (textual convention, managed object, trap, and
so on) and the modules in which the name is defined.

Note that although conceptually it is useful to think
about these front-end components as independent tasks,
they do not necessarily operate sequentially. For exam-
ple, the same routine that parses a particular syntactic
construct often checks it for semantic correctness. In ad-
dition, the scanner is often implemented as a subroutine
of the parser, which asks the scanner for the next token
when the parser needs one.

Back-ends

Many MIB compilers contain multiple back-ends, each
of which produces an output file containing a different
representation of the same set of input MIBs. If the front-
and back-ends of the MIB compiler are integrated in a
single application, then one typically uses command line
switches to select a particular output format. If the front-
and back-ends are implemented as separate applications
that communicate by means of an intermediate file, then
one generates the desired output format by executing the
appropriate back-end after generating the intermediate
file using the front-end.

The output from some back-ends is specific to the im-
plementation of agents, while the output from others is
primarily suitable for use by management applications.

Back-ends that Aid in Agent Implementation

Before describing the output from back-ends designed to
aid in the implementation of SNMP agents, it is useful to
have a basic understanding of the structure of a typical
SNMP agent. Most SNMP agent implementations
separate SNMP protocol processing from MIB variable
access. All knowledge of the SNMP protocol, including
the formats of the various Protocol Data Units (PDUs),
and the encoding and decoding of ASN.1 data, resides in
an SNMP protocol engine. All knowledge of the managed
objects in the MIB resides in a set of access functions
commonly known as “method routines”.

Typically, a C data structure representation of the
MIB tree provides the glue between the protocol engine

VOLUME 2, NUMBER 1 JANUARY/FEBRUARY, 1993



The Simple Times 4

and the method routines. When the protocol engine
receives an incoming SNMP request, it extracts the
OBJECT IDENTIFIER name of the object instance whose
value is to be retrieved or changed. Using the OBJECT
IDENTIFIER prefix that forms the name of the corre-
sponding OBJECT-TYPE, the protocol engine consults the
C data structure to find pointers to the method routines
specific to that OBJECT-TYPE. The protocol engine invokes
the appropriate method routine to perform the requested
operation on the specified object instance.

Constructing the C data structure representation of
a MIB tree by hand, even once, is tedious at best.
Several MIB compilers provide back-ends that generate
the required C data structure automatically from a set
of input MIBs. (Some agent implementations do not link
the MIB tree into the agent at build time. Instead, these
implementations generate the tree structure at run-time
from a data file containing a “flat” representation of the
MIB tree. A MIB compiler is normally still used to
generate this data file, albeit using a different back-end.)

Several MIB compilers contain back-ends that assist
in the implementation of the method routines for an
agent. One of these back-ends generates a C source file
containing skeleton function definitions for each method
routine. These skeleton functions are typically stub
functions with the appropriate return type and argument
list. The agent writer fills in the code required to get
or set the appropriate MIB variable. A clever compiler
may even be able to fill in some or all of the code required
to implement a particular method routine.

Another back-end produces a C header (.h) file con-
taining ANSI C and non-ANSI C function prototypes for
the method routines. This header file is included by the
file containing the MIB tree data structure and the file
containing the definitions of the method routines.

At least one MIB compiler contains a back-end that
produces a C source file containing functions that an
agent can invoke to send SNMP Trap-PDUs correspond-
ing to the TRAP-TYPE definitions contained in the input
MIBs. These functions include code to create variable
bindings in the Trap-PDU for the variables specified in
the VARIABLES clause of the TRAP-TYPE definition.

Back-ends for Use with Management Applications

Most MIB compilers include one or more back-ends that
generate output files designed for use by management
applications. One output file format common to a
number of MIB compilers is known as mosy format after
the name of a popular MIB compiler, mosy. A mosy
format file includes a flat representation of the MIB tree
that management applications can use to map between
descriptors and the corresponding OBJECT IDENTIFIERS.

It also specifies each object’s syntax, access, and status.
The following example is an excerpt from a mosy format
file generated from RFC 1213 (MIB-II):

mib-2 mgmt.1
system mib-2.1
...
sysDescr system.1 OctetString read-only mandatory
sysObjectID system.2 ObjectID read-only mandatory
...

Several compilers include back-ends that output ex-
tended versions of mosy format. These formats preserve
more of the information contained in the input MIBs,
such as indexing information for objects in conceptual
rows and subtype information for objects with range
and size constraints. They also include additional
information for objects with enumerated integer syntax
to enable management stations to map integer values to
the corresponding identifiers.

MIB Compiler Availability

This section describes those MIB compilers which are
the most popular and with with the author is most
familiar. Mention of a particular compiler does not imply
its endorsement, either by the author or by The Simple
Times.

There are at least two openly-available stand-alone
MIB compilers. The first is named mosy, which
is an acronym for Managed Object Syntax-compiler
(YACC-based). This compiler is a part of the ISO
Development Environment (ISODE), a package for de-
veloping OSI protocols and applications. It is available
by anonymous FTP from ftp.uu.net in the directory
/networking/osi/isode.

The second, named SMIC (the SNMP MIB Compiler),
generates output files in mosy and extended mosy
format. It also produces a more complex SMIC-specific
format meant for use with as yet unreleased back-
ends. SMIC is available by anonymous FTP from
ftp.synoptics.com in the directory /eng/mibcompiler.
(Volume 1, Number 4 of The Simple Times contains an
announcement for SMIC.)

In addition, Carnegie Mellon University (CMU) dis-
tributes an openly-available SNMP implementation.
The CMU SNMP package does not contain a stand-alone
MIB compiler. Instead, it provides a library that
management applications can call at startup to compile
MIB modules from disk into memory. Although the
CMU SNMP package can also be used to implement
an SNMP agent in a managed device, no stand-alone
MIB compiler is available for generating the C da-
ta structure representation of the agent’s MIB tree.
The CMU SNMP package is available by anonymous

VOLUME 2, NUMBER 1 JANUARY/FEBRUARY, 1993



The Simple Times 5

FTP from lancaster.andrew.cmu.edu in the directory
/pub/smp-dist.

Both Epilogue Technology, Inc. and SNMP Research,
Inc., market commercial SNMP implementations in
source code format that developers can license to incor-
porate SNMP functionality into management stations or
network devices. Each company licenses a MIB compiler
designed to work with its SNMP implementation.

The Epilogue Technology MIB compiler includes a
variety of back-ends that produce MIB representations
suitable for both agents and management stations. Oth-
er back-ends generate C source code that can assist in the
implementation of method routines and the generation
of SNMP Trap-PDUs.

The SNMP Research MIB compiler consists of two
independent programs. The first is an enhanced version
of the openly-available mosy MIB compiler described
above. Its back-end produces an enhanced mosy format
output file. The second program processes the enhanced
mosy output and generates a variety of output files
suitable for implementing both management stations
and agents.

In addition, many commercial network management
applications include a MIB compiler for importing in-
formation about managed objects, particularly those in
vendor MIBs. For example, SunConnect’s UNIX-based
network management station, SunNet Manager, in-
cludes a stand-alone MIB compiler named MIB2Schema
that translates MIBs into a proprietary format data
file (called a schema file) that is read by the Sun-
Net Manager application. Similarly, Hewlett-Packard’s
OpenView Network Node Manager application contains
an integrated MIB compiler that can be used to import
information about managed objects directly from MIB
modules.

Choosing a MIB Compiler

The intended use of a MIB compiler may affect the
criteria used in choosing one. For example, if the goal is
to compile MIBs for use with an agent or management
application, then it’s desirable to use a MIB compiler
that can successfully parse MIBs containing some minor
ASN.1 syntax errors. Otherwise, a fair bit of time may be
spent correcting syntax errors in MIBs, since even some
MIBs published as RFCs contain syntax errors.

The mosy MIB compiler, and some compilers derived
from mosy, perform less strict syntactic and semantic
checking than other compilers, and as a result they
will successfully compile MIBs with some syntax errors.
Other compilers perform stricter syntactic and semantic
checking, and provide command line switches that
invoke less stringent checking.

On the other hand, if you are writing a proprietary
vendor MIB, or a new Internet-standard MIB, you
probably want a MIB compiler with very strict checking
that will catch any errors you inadvertently introduce.
SMIC and the Epilogue Technology MIB compiler are
particularly good for this purpose.

Finally, most of the MIB compilers mentioned in the
previous section are available in source code format,
with the exception of those compilers that come with
commercial network management applications. As a
result, many of the compilers can be modified to generate
output in formats they don’t already support. Although
a compiler designed to generate output for one SNMP
implementation can be modified to generate output files
for a different one, it is usually best to use the MIB
compiler that was designed for use with a particular
SNMP implementation or management application.

Industry Comment
Marshall T. Rose

This issue marks the beginning of the second year for
The Simple Times.

Sadly, we begin the year with the departure of one of
our featured columnists, Robert L. Stewart of Xyplex,
Inc. Bob’s column, Working Group Synopses, is by far
the most demanding column in The Simple Times.
During our first year, Bob was tireless in reporting and
analyzing the goings-on of the two dozen SNMP-related
working groups in the IETF. In addition, Bob has also
been providing adult supervision as chair of the SNMPv2
working group. As with all of the people who volunteer
their time in the Internet community, Bob also has
a real life, and his column was proving too much of
time-sink. Even though we’ll miss Bob’s contributions
to The Simple Times, he’ll still be participating in the
IETF process.

Taking over for Bob will be Frank J. Kastenholz of
FTP Software, Inc. You probably remember Frank as
the guy who stepped in to clean-up the Ether-like MIB
mess of 1991. Frank was also one of the people who
contributed to the POISED working group activity on
adding accountability to the Internet standardization
process. So, starting with this issue, the Working Group
Synopses time-sink is on Frank’s shoulders.

As usual, this issue ran over, so there won’t be an
industry commentary. But, in the next issue, I hope to
have something on the “next” step in the evolution of
network management.

VOLUME 2, NUMBER 1 JANUARY/FEBRUARY, 1993



The Simple Times 6

Applications and Directions
Steven L. Waldbusser

In this issue: Should user interface information be
standardized?

Many in the network management industry are rec-
ognizing that while great progress has been made in
network management protocols and MIBs, the effec-
tiveness of network management applications has not
kept up. Some members of the standards community
have responded to this situation with requests for new
types of information to be added to the standard MIB
format for the benefit of applications. On the surface,
this information is undeniably useful. However, as one
digs deeper, one finds that this data simply optimizes
an old, tired paradigm, potentially at great cost to
the standardization process. Fortunately, a different
solution exists that provides this information without
the drawbacks that would otherwise exist.

User Interface Information

This application-oriented information consists of addi-
tional information for each MIB object beyond those
already used. In addition to the information such as type
and description that currently exist, this application-
oriented information consists of descriptive labels for use
on a table or graph, formatting information, thresholds,
help text, and so on. This information would be read-
able by the management station and would direct the
management station to provide a better user interface to
SNMP data it doesn’t otherwise understand.

As an example, consider the information that might be
provided about the RMON MIB etherStatsCollisions

object:

etherStatsCollisions APPLICATION-INFO
-- suitable for column header

SHORT-LABEL "Collisions"
LONG-LABEL

"Ethernet CSMA/CD Collisions"
PRINT-FORMAT "decimal"

USEFUL-STAT "per etherStatsPackets"

-- i.e., also useful per second
USEFUL-STAT "per sysUpTime * 100"

-- absolute value isn’t interesting
THRESHOLD

".03 per etherStatsPackets"

-- polling is useful
VOLATILITY volatile

ICON-BIT-MAP
"120A9847E48C92A001F28437B5900E12
8A7712C890203D487565D6080C4E7478
3B921C983A782C08314E78213C019C28
3E774C182A001B2438A7565D6080437B"

HELP-TEXT "us-english"
"A collision is an event on an
Ethernet network that is a part of
everyday operation, but when
excessive, can signal that the
network is overloaded or is too
long (especially when the average
packet size is small). To avoid
excessive collisions, use Token
Ring."

How this Information is Useful

This data could be read by a management station
and put to good use. Some of the information would
control how the application displayed data retrieved
with SNMP, while some of the information can be
displayed to the user to help describe the associated
SNMP data. Of course, even with this capability, this
generic management station is still “dumb” — it doesn’t
have the capability to make recommendations to the user
based on the data that is received via SNMP. Typical
network managers need this intelligence, which can only
be adequately provided by applications that are written
specifically for a particular application or a particular
MIB.

Given that vendor-specific MIBs outnumber standard
MIBs by a factor of ten and are (often) less stable, it is
difficult for an NMS vendor to support all vendor-specific
MIBs effectively. For those vendor-specific MIBs that
a network management system vendor cannot build
tailored applications for, the additional information can
be helpful. The question remains — how and where do
we provide this information?

How not to distribute User Interface Information

It has been suggested that information such as this be
added to the standard MIB format, i.e., by extending
the OBJECT-TYPE macro. For several reasons, this is
the wrong place to define this information. A MIB is a
contract between agent writers and management station
writers, drafted by a standards body or a vendor. A MIB
describes data for the sole purpose of ensuring that both
manager and agent developers are implementing with
the same assumptions. (That is why the description
text can be cryptic to users.) MIB authors in general,
and standards bodies in particular, would be greatly
burdened if they took on the additional responsibility

VOLUME 2, NUMBER 1 JANUARY/FEBRUARY, 1993



The Simple Times 7

of designing user interfaces. A MIB working group
has more pressing things to worry about than keeping
labels short enough so that all the columns of a table
fit on an 80 column display, for example. In addition,
standard MIBs have an international audience. Clearly,
it would be inappropriate for a standard to mandate an
English-language user interface; similarly, it would be
equally inappropriate for a technical working group to
spend lots of time translating user interface information
into 20 languages (and ensuring that the labels still fit
on an 80 column screen)!

Application and user interface design remains an
art and properly belongs in the hands of application
designers, not MIB working groups. Evidence of this art
is that most decisions that must be made in the interface
design are based on aesthetic grounds, e.g., is it tasteful
to take the vowels out of the labels to make them fit on
an 80 column screen? The format of this data itself is not
even stable. Very little experience has been accumulated
about what information is worth storing and what format
to store it in. It would not be appropriate to expose
standard MIBs to such instability.

The Right Way

The correct way to provide this capability would be
an additional macro, not unlike the example above,
that is linked to the MIB object to which it refers.
Files of APPLICATION-INFO macros could be provided
by agent vendors, service providers, consultants, and
staff engineers to refine and customize parts of the user
interface of network management stations accessing
particular MIBs. This would be most appropriate for
vendor-specific MIBs which would not otherwise expect
application support from all network management sta-
tions.

It is becoming more and more widely recognized that
network management applications need to become more
effective. While it is important to put more work into
this, it is more important to put it into the right areas.
User interface information doesn’t belong in standard
MIBs, but could be helpful if available in a standard
form from other sources. However, keep in mind that
while this is useful, it optimizes the wrong part of the
problem. No great leap forward in the state of the art
will arise from enhancing old paradigms. For that, there
is no substitute for ingenuity, hard work, and running
code.

Ask Dr. SNMP
Jeffrey D. Case

Dear Dr. SNMP,
Why can’t you be more consistent? You insist on
implementing everything before it can be accepted as a
part of a new specification (like SNMPv2) but sometimes
reject other people’s ideas without having the benefit of
implementation experience. How can you say an idea
isn’t a good one if you haven’t implemented it?

— Wheedler in Working Group

Dear Wheedler in Working Group,
Down on the farm, we have a saying:

“You don’t need to lick a pump handle in February
to know it’s a bad idea.”

Similarly, I have never (yet) failed to remember my
wedding anniversary but I don’t have to conduct an
experiment to find out whether doing so would be a good
idea. Experience has shown that sometimes there are
bad ideas hiding behind a good idea that can be found
through experimentation, but usually the only things
hiding behind a bad idea are more bad ideas. Dr. SNMP
is able to spend all of what otherwise would be his leisure
time discovering that what looked like a good idea isn’t,
without spending time proving that a bad idea is.

Dear Dr. SNMP:
I see that the readOnly error status code is a part of
the SNMPv2 drafts, having been retained for backward
compatibility. Why is this there, given than SNMP
version 1 compliant systems should never generate a
readOnly status?

— FAQ from Future

Dear FAQ from Future,
The readOnly status code is the topic of some of the most
frequently asked questions regarding SNMP version 1.

Down on the farm, we have a saying:

“Nothing has more lives than an error that you
refuse to correct.”

One of the goals of the SNMP version 2 effort was
to tighten the language of the Structure of Mange-
ment Information (SMI), Management Information Base
(MIB), and protocol (SNMP) specifications in order to
eliminate ambiguities, avoid frequent errors, and to
address frequently asked questions. I’m afraid that
retaining this error code will allow us to generate a whole
new set of frequently asked questions and answers, some
of which may even be correct.

VOLUME 2, NUMBER 1 JANUARY/FEBRUARY, 1993



The Simple Times 8

Security and Protocols
Keith McCloghrie

Responsibility for the definition of SNMP version 2 was
split across two working groups of the IETF, each one us-
ing as their basis those parts of the Simple Management
Protocol (SMP) and Framework specification relevant
to their work. The SNMPv2 working group tackled
the major changes, with the SNMP Security working
group updating its previous work on the Administra-
tive Framework and Security protocols. The SNMPv2
working group is done and now waits on the SNMP
Security working group which, as of this writing, is not
yet complete. In this issue, we’ll look at the changes the
SNMP Security working group has already agreed upon,
and mention the issues requiring the other changes still
being discussed. In the next issue, we expect to be able
to report on the completion of these other changes.

Modified Digest Authentication Protocol

The changes already approved are those which were
specified by the SMP. Of these, the major changes con-
cern the Digest Authentication Protocol. From previous
issues of this column, you will recall that the Digest
Authentication Protocol uses the MD5 digest algorithm
and loosely synchronized clocks. It is the mechanisms
involved in using the synchronized clocks which are
changed. One change is the simplification of the Clock
Synchronization algorithm; the other is the elimination
of the Ordered Delivery mechanism.

Recall that in SNMP Security, messages are originated
by a party executing within one SNMP entity, and direct-
ed to a party executing in another SNMP entity. For each
such party configured to use the Digest Authentication
Protocol, there is an authentication clock. The Message
Timeliness mechanism provides protection against the
malicious replay of messages by including a timestamp
of the sender’s notion of the source party’s clock in a
message. When a message is received, the timestamp
is added to a configured “lifetime” value, compared to
the receiver’s notion of the source party’s clock, and the
message is discarded as unauthentic if the timestamp
is too old. For this to work, obviously the sender’s
and receiver’s notions of the clocks must be loosely
synchronized.

Simplification of Clock Synchronization

The simplification of the clock synchronization algorithm
results from extending the Selective Clock Acceleration
mechanism to apply to the authentication clocks of both
the source and destination parties of a message. To
facilitate this, the change specifies that the sender’s

notion of both the source party’s clock and the destination
party’s clock are included in a message. With this
extension, the mechanism causes the receiver’s notion of
each authentication clock in a message to be advanced, if
necessary, to match that clock’s timestamp value in the
received message.

This allows the clock synchronization algorithm exe-
cuted by a manager to omit: the retrieval of the agent’s
notion of the authentication clock of the party executing
at the agent, the check for the agent’s notion of that clock
being slow, and the rectification of this condition through
aset operation. The elimination of the potential need for
this set operation is a significant benefit of this change.

Elimination of Ordered Delivery Mechanism

The Ordered Delivery mechanism required that any mes-
sage delivered out of order be declared unauthentic. The
SMP specification declared that this was unnecessary,
detrimental to the efficiency of network management,
and overlapped with other mechanisms of the Digest
Authentication Protocol. In particular:

First, there is no security requirement to protect
against malicious re-ordering of network management
retrieval operations, especially since such re-ordering
can and does happen through normal, non-malicious,
operation of a network. Thus, the Ordered Delivery
mechanism could cause genuine authentic messages to
be declared unauthentic due to the normal operation of a
network. Note also that this behavior is likely to happen
more frequently under conditions of network stress, at
which times network management needs to perform at
its best.

Second, there is a security requirement to protect
against malicious re-ordering of network management
set operations. However, this requirement is not just
protection for those issued by one network manager;
rather, it must work for set operations issued on
behalf of all network managers. The Ordered Delivery
mechanism, however, operates only on messages sent by
a single network manager, and therefore, is not sufficient
to provide the required protection. To address this issue,
SNMPv2 defines a new MIB object, snmpSetSerialNo,
which provides the required protection.

Third, another mechanism specified as part of the Di-
gest Authentication Protocol is the Message Timeliness
mechanism. There was overlap in the functionality of
these two mechanisms. With use of the Ordered Delivery
mechanism removed, this overlap was removed. The
Message Timeliness mechanism is retained to provide
protection against malicious replay of a (retrieval) oper-
ation outside of the designated period (i.e., the lifetime)
during which replay and/or out-of-order delivery can

VOLUME 2, NUMBER 1 JANUARY/FEBRUARY, 1993



The Simple Times 9

occur non-maliciously due to the normal operation of the
network.

For these three reasons, the working group approved
the elimination of the Ordered Delivery mechanism.

Reduced Requirement for DES

Another change approved by the working group is a
reduced requirement for the use of a privacy protocol,
i.e., use of the Data Encryption Standard (DES). In
particular, it is not required for the changing of party
secrets. This change is possible because the distribution
of new secrets in SNMPv2 set operations is achieved by
including in the set operation, not the new secret value,
but rather the XOR-ed value of the new secret and the
old secret. While this provides no protection if the old
secret was known by an eavesdropper, neither does the
use of DES if the DES secret was already known by an
eavesdropper!

A mechanism to further reduce the requirement for
DES is one of the issues still being discussed by the
working group. It is expected that the creation of new
parties using SNMPv2, without the use of DES, will also
be possible through having the secrets of new parties
initialized as copies of the secrets of an existing party.

Other Changes

Other changes already approved are the updating of oth-
er aspects of SNMP Security’s Party MIB in accordance
with the SNMPv2 changes, including incorporating the
values of the new SNMP PDU types in the access
privileges variable, and updating the values assigned
by convention to the initial party identifiers and their
associated views and access control parameters.

Finally, instance-level granularity is now optional
in the checking of whether a variable accessed by an
SNMP PDU is in the relevant MIB view. That is,
SNMPv2 entities acting in the role of an agent are not
required to support MIB views where some instances of
a particular leaf object type are in the MIB view, and
some are not. However, these same MIB views are
used in determining which SNMPv2 entities acting in
a manager role should receive trap notifications. As
such, agent implementors might still wish to provide
instance-level granularity in order to allow fine-grain
configuration of trap notifications. For example, the
sending of linkDown traps for different interfaces to
different managers requires instance-level granularity.

Changes Still Under Discussion

In the SNMP Security working group deliberations prior
to its meeting last November, several issues were raised

that had not been addressed by the changes specified by
the SMP. Several proposals were put forward at that time
to address these issues. The working group is currently
trying to come to a consensus regarding these proposals,
in their most recent form.

The issue of further reducing the need for DES was
mentioned above. The other issues are:

� The so-called “party proliferation” problem, i.e.,
since parties identify not only particular entities
and security properties but also a local MIB view
or a particular proxy relationship, separate parties
with the same security properties are required for
each manager with access to multiple views/proxy
relationships. Each such additional party increases
the chore of maintaining the party clocks and
secrets.

� A reduction in the amount of non-volatile storage
needed to implement the Party MIB by agents with
limited resources.

� Including a notion of the “temporal” semantics of
MIB objects, e.g., not just the current values of
MIB objects, but also their values at the next
re-initialization/reboot of the agent, or their values
at other times.

We’ll see how these issues are resolved in this column
next time.

Standards
David T. Perkins

In December and January, the Ether-like Interface,
DS3/E3 Interface, and DS1/E3 Interface MIBs were
published as RFCs. These are all updates to previous
versions, and the old versions are now historic. Also
published was the MIB for RIPv2. As reported in the
last issue, the documents defining SNMP over other
transports (OSI, AppleTalk, and IPX) are still in the
pipeline, and are not yet published as RFCs.

Recently Published RFCs

RFC 1389 - RIPv2 MIB (Proposed Standard)
This document defines the MIB objects needed for

monitoring and controlling systems that implement the
RIP or RIPv2 routing protocols. The MIB consists
of a global group that has global counters for RIP
traffic generated, and routing table updates due to
RIP. Following it are a table for interface status, a
table for interface configuration, and a table containing
information about interactions with RIP peers.

VOLUME 2, NUMBER 1 JANUARY/FEBRUARY, 1993



The Simple Times 10

RFC 1398 - Ether-Like Interface type MIB (Draft
Standard)

This document updates the previous version, RFC
1284. The major changes were to remove several objects
due to implementation experience.

RFC 1406 - DS1/E1 Interface type MIB (Proposed
Standard)

This document updates the previous version, RFC
1232. That document contained a fundamental error of
specifying the syntax of many objects as Counters when
the appropriate syntax should be INTEGER or Gauge.

RFC 1407 - DS3/E3 Interface type MIB (Proposed
Standard)

This document updates the previous version, RFC
1233. That document contained a fundamental error of
specifying the syntax of many objects as Counters when
the appropriate syntax should be INTEGER or Gauge.

RFC 1414 - Identification MIB (Proposed Standard)
This document extends the tcpConnTable of MIB-II

by associating user identification information with each
connection.

Standards Progression of MIBs

As was previously noted, many MIBs are at the Proposed
stage (step 1), but few have moved to the Draft stage (step
2). Why is that, and what can be done? Below are listed
some of the factors which have delayed the advancement.

To create a new MIB, a new working group is formed,
which produces a document that is submitted for con-
sideration as a Proposed Standard. In the past, after
the WG completes the document, it disbands. Thus, no
real force remains to keep the effort going. To counter
this, WGs will no longer disband, but go dormant for
a time while the MIB is being implemented: the WG’s
charter will be updated, it’s mailing list and archives will
remain, and the chair will remain filled, but no meetings
are scheduled. This change should allow a forum
for implementors to communicate their experiences,
so that interoperability testing can be planned, and
operational experiences exchanged. These are required
for advancement to the next stage.

Another factor that has kept many WG members
busy over the last year has been SNMP Security and
then SNMPv2. The individuals that were involved in
developing the existing MIBs have been working on
evaluating and implementing these new management
thrusts. Now that these efforts are coming to a close,
attention can come back to the existing SNMP MIBs.

The above two factors do not account for all of the
delay in the progress of the MIBs. The biggest factor

that has been shown time and time again in the IETF is
leadership by a few key individuals. The effective leaders
have been able to “corner” the needed talent, and get
commitments by companies who are fierce competitors
to work together to accomplish a common goal. The MIB
process needs one or two leaders.

In the next issue, a profile will be given of a successful
IETF leader. Maybe some of The Simple Times readers
will recognize themselves and step up to the challenge.

Summary of Standards

Full Standards:

� 1155 - Structure of Management Information (SMI);

� 1157 - Simple Network Management Protocol
(SNMP);

� 1212 - Concise MIB definitions; and,

� 1213 - Management Information Base (MIB-II).

Draft Standards:

� 1398 - Ether-Like Interface Type MIB.

Proposed Standards:

� 1229 - Extensions to the generic-interface MIB;

� 1230 - IEEE 802.4 Token Bus Interface Type MIB;

� 1231 - IEEE 802.5 Token Ring Interface Type MIB;

� 1239 - Reassignment of experimental MIBs to
standard MIBs;

� 1243 - AppleTalk MIB;

� 1253 - OSPF version 2 MIB;

� 1269 - BGP version 3 MIB;

� 1271 - Remote LAN Monitoring MIB;

� 1285 - FDDI Interface Type MIB;

� 1286 - Bridge MIB;

� 1289 - DECnet phase IV MIB;

� 1304 - SMDS Interface Protocol (SIP) Interface Type
MIB;

� 1315 - Frame Relay DTE Interface Type MIB;

� 1316 - Character Device MIB;

� 1317 - RS-232 Interface Type MIB;

� 1318 - Parallel Printer Interface Type MIB;

VOLUME 2, NUMBER 1 JANUARY/FEBRUARY, 1993



The Simple Times 11

� 1351 - SNMP Administrative Model;

� 1352 - SNMP Security Protocols;

� 1353 - SNMP Party MIB;

� 1354 - SNMP IP Forwarding Table MIB;

� 1368 - IEEE 802.3 Repeater MIB;

� 1381 - X.25 LAPB MIB;

� 1382 - X.25 PLP MIB;

� 1389 - RIPv2 MIB;

� 1406 - DS1/E1 Interface Type MIB;

� 1407 - DS3/E3 Interface Type MIB; and,

� 1414 - Identification MIB.

Experimental:

� 1187 - Bulk table retrieval with the SNMP;

� 1224 - Techniques for managing asynchronously
generated alerts;

� 1227 - SNMP MUX protocol and MIB;

� 1228 - SNMP Distributed Program Interface
(SNMP-DPI);

� 1238 - CLNS MIB;

� 1283 - SNMP over OSI; and,

� 1298 - SNMP over IPX.

Informational:

� 1147 - A network management tool catalog;

� 1215 - A convention for defining traps for use with
the SNMP;

� 1303 - A convention for describing SNMP-based
agents; and,

� 1321 - MD5 message-digest algorithm.

Historical:

� 1156 - Management Information Base (MIB-I)

� 1232 - DS1 Interface Type MIB;

� 1233 - DS3 Interface Type MIB; and,

� 1284 - Ether-Like Interface Type MIB.

Working Group Synopses
Frank J. Kastenholz

With this issue of The Simple Times, I am taking over
this column from Bob Stewart. Over the past year, Bob
has done an outstanding job in reporting SNMP activities
in the IETF’s working groups. I hope that I can live up
to the standards that Bob set.

This column contains my own distillation of the conver-
sations that go on in the various working groups. Rather
than attempting to report statement by statement what
has gone on, I have usually tried to condense the
messages that make up a discussion and present the gist
of the thread.

This column is a summary of activities. There is no
substitute for actually participating in a working group.
Even if you cannot go to the meetings, you can subscribe
to the mailing lists. Included in each working group’s
summary is the address of the group’s mailing list. To
subscribe, simply append “-request” on to the local-
part of the address. For example, the submission address
for the SNMP general discussion list is

snmp@psi.net

so to subscribe, you’d send a message to

snmp-request@psi.net

If you are interested in a group’s activities and do not
subscribe to the mailing list, you should!

SNMP General Discussion

Submissions: snmp@psi.net

A summary of The Economist’s year-end article “The
Good Network Guide” was posted. This article placed
in the Internet in the company of Skull and Bones,
Rhodes Scholars, the Muslim Brotherhood, Freemasons,
and Opus Dei.

The perennial question of when to return readOnly
status was raised. The poser of the question indicated
that The Simple Book indicates some conditions when
a readOnly status should be returned, but the SNMP
RFC does not. It was pointed out that The Simple
Book is wrong; and that the SNMP RFC does define
readOnly but does not specify its use. Whenever
an attempt is made to set a variable which is not
writable, noSuchName should be returned. The reason
is that the variable is not in the MIB view that is
applicable to the set operation. One message further
went on to state that no response should be sent by
the agent as attempting to do a set without having the
proper privileges should be considered an authentication
failure.

VOLUME 2, NUMBER 1 JANUARY/FEBRUARY, 1993



The Simple Times 12

A question about how to handle zero-length integers
was asked. One response said that this is a parse error
and you should increment any parse-error counter and
discard the packet. This view was supported by a second
response which said that this encoding is not allowed
under the Basic Encoding Rules (BER).

A question on how to configure SunNet Manager to be
able to access a MIB was posted. A response was posted
directing the original questioner to a SunNet Manager
users’ mailing list, snm-people@zippy.arizona.edu.

A question about SNMP Security work was asked. The
question revolved around the party concept. The person
asking the question wanted to know how to differentiate
different people requesting management operations on
an agent, assuming that a management station had a
single party. The response pointed out that a manage-
ment station could have multiple parties associated with
it and that the management station had to perform any
user/party associations. The response also pointed out
that the current SNMP Security RFCs (RFCs 1351, 1352,
and 1353) are being updated and incorporated into the
SNMPv2 work and that fielding products based on the
current RFCs was not recommended. Several questions
were posted looking for mechanisms, comments or advice
about standard methods for extending SNMP agents for
managing network applications. There were some direct
responses from vendors.

In addition, a discussion of the “dispatcher” concept
developed. In this concept, a special de-multiplexor
listens to the standard UDP port. This module then
dispatches requests to the correct sub-agents which
listen to their own, individual, ports. A configuration
file provides all of the bindings needed between the
sub-agent’s ports and the OIDs. Some technical concerns
with the approach were raised, such as how to deal with a
sub-agent that has to support a subtree in the domain of
another agent, and how to deal with different sub-agents
handling different instances of variables, such as rows of
a table.

Someone asked if there is a standard way for running
SNMP over a serial line, such as SLIP or PPP. This
person suggested that by using dial-up connections in
this manner, a manager station could connect to network
elements on the far side of a network partition.

A question regarding the ifTable in dynamic en-
vironments was asked. In some environments, the
number of interfaces can change without requiring the
management system to be re-initialized. This is a
problem since the definitions of ifNumber and ifIndex

require that the ifTable be a fixed array. The response
suggested that the entries in the ifTable remain in
existence but be removed from all MIB views. One
person asked if Gauges must be read-only. The protocol

does allow Gauges (and Counters or Timeticks) to be
read-write.

A new version of the Beholder, an RMON-compliant
Ethernet Monitor, from Delft University of Tech-
nology was announced; it is available for anony-
mous FTP from dnpap.et.tudelft.nl in the directory
pub/btng. There is also a Beholder mailing list:
btng@dnpap.et.tudelft.nl.

Interest in the auto-discovery problem was expressed.
SNMPv2 should at least have the hooks necessary to
define auto-discovery. Some considered it ill-mannered
not to answer when asked your name. There was some
resistance to reviving this discussion. It was pointed
out that to be useful, there needs to be a well-known
community or party with read-only access to the system

group and a requirement to respond to requests received
on a broadcast address. It is believed that SNMP
Security will have the needed required initial parties.
MIBs need more information, such as short and long
descriptions, the name of the MIB, more descriptive
detail on indexes, and so on. One person pointed out
that HEMS had such information.

Appletalk/IP Working Group

Submissions: apple-ip@cayman.com

On January 25, 1993, a query on the status of the SNMP
over AppleTalk draft was posted to the list, noting that
the Internet-Draft had expired. The response was that
publication was imminent.

BGP Working Group

Submissions: iwg@ans.net

If traps are lost, counters of state changes are needed if
the state change traps are lost.

A new Internet-Draft of the BGP MIB has been
published.

Bridge MIB Working Group

Submissions: bridge-mib@decwrl.dec.com

A request for the draft of the Source Routing MIB was
posted to the list. A question, asking when new values
for the Max Age, Hello Time, and Forward Delay become
operational, was posted. A response noted that 802.1D
says that new values take effect at initialization time
and when becoming the root bridge.

VOLUME 2, NUMBER 1 JANUARY/FEBRUARY, 1993



The Simple Times 13

Character MIB Working Group

Submissions: char-mib@decwrl.dec.com

A request was made to add enqHost(6) and enqTerm(7)
to the enumerations for charPortInFlowType and
charPortOutFlowType. This is needed to support HP-
style flow control. This was believed to be reasonable if
it represents a common need.

The problem of supporting multiple flow-control meth-
ods in charPortInFlowType and charPortOutFlowType

was discussed. It was suggested that the enumerated
BIT STRINGs of SNMPv2 could be used for this. The
question of whether or not existing implementations
actually have this problem was posed.

The question of whether the Character MIB covers
virtual ports, such as on an X.25 gateway was asked.
The only response indicated that this was the intent.

The chair of the working group requested reports of
implementation status for the MIBs. This information is
needed as the MIBs are considered for Draft Standard.
At least 5 vendors indicated that their agents support the
MIBs and at least three network management stations
include the MIBs.

Chassis MIB Working Group

Submissions: chassismib@cs.utk.edu

For a while, the mailing list was temporarily off-line.
A request was made to have both nominal and actual

values for sensors.
A proposal was made in the Washington DC IETF

meeting to change models. The goal is a more generic
MIB with less complexity. In this model the chassis is
a generic container. The physical view of the chassis
has compartments of certain types, while the logical
view has entities with certain network functions. An
entity is composed of one or more physical modules. The
concept of a segment has been removed as it is specific to
some implementations. However, some people pointed
out that the segment is still a useful element since they
can simplify certain relationships in the chassis. The
group decided that they would be kept and modeled as
entities. This proposal received a lot of support.

Several questions were raised on how Chassis MIB
relates to possible hardware implementations:

� Are segments internal or external, to the link
entities?

� How does a slot relate to set of MIBs?

� How does the Chassis MIB tie slots, entities, and
ports together?

� Is the OID in chasEntityEntry a branch or a leaf?

� Does chasEntityTable provide validation for re-
quests to the entity?

There was a question as to how a virtual slot, such as a
built-in manager, should be numbered. One suggestion
was to use a DisplayString with the real name of the
slot. Another proposed solution was to index the slot
table by an integer and an OID indicating the content of
the slot. The latter method was considered easier to do.

The issue of how to identify sensors that are slot-
specific rather than chassis-wide was raised. The
solution is to use the slot number as an index, with 0
indicating chassis-wide.

A new internet draft was published on January 14,
1993.

DECnet Phase IV MIB Working Group

Submissions: phiv-mib@jove.pa.dec.com

No traffic to report.

Ethernet MIB Working Group

Submissions: enet mib@ftp.com

On January 15, 1993, the announcement of the publica-
tion of the latest version of the MIB for Ethernet-like
interfaces was forwarded to the list. This MIB is
available as RFC 1398.

The Ethernet MIB Working Group has terminated.
The mailing list will remain active as a forum for
implementors.

FDDI MIB Working Group

Submissions: fddi-mib@cs.utk.edu

On January 5, 1993, a request for the status of the MIB
was posted to the list. A response indicated that the MIB
is being revised to conform to ANSI SMT 7.2 (the current
MIB is based on SMT 6.2).

On January 15, 1993, a message was posted that was
an exhortation for all participants of the working group
to contribute any notes, text, or other information that
they may have from the November IETF meeting in
order to help the document’s editor to complete his task.
On January 21, a response was posted that had several
points on this topic:

� The SMTTraceMAXExpiration object should not be
in units of nanoseconds, since the default value of
the object is 7 seconds. Millisecond resolution was
proposed.

VOLUME 2, NUMBER 1 JANUARY/FEBRUARY, 1993



The Simple Times 14

� The SetCount variable should be removed since it is
not clear how the object can guarantee consistency
and the proper reliable locking which it is supposed
to provide. Part of the problem is that the SetCount
object was optional.

� It was pointed out that PORTRequestedPaths is not
a single integer, as specified in the FDDI MIB, but
rather is three separate integers. It was suggested
to turn this MIB object into a 3 byte OCTET STRING,
each byte representing one of the integer values.

Host MIB Working Group

Submissions: hostmib@andrew.cmu.edu

On January 7, 1993, in response to an announce-
ment on the publication of a new draft of the MIB,
a message was posted asking for the rationale for
the hrDiskStorageMedia and hrFSType objects. The
message also indicated that there were discrepancies
between the types defined for hrDiskStorageMedia and
hrStorageTypes. The post also asked how space for a
jukebox should be calculated (three alternatives were
suggested: space of currently accessable platter, space
of all platters in the box, and space of all platters now in
data base that can be loaded into box). More types for
hrFSTypes, covering network file systems such as NFS,
AFS, and RFS, were proposed.

Hub MIB Working Group

Submissions: hubmib@synoptics.com

An inconsistency in the wording of the MIB was brought
up. It was pointed out that the DESCRIPTION for the
rptrNonDisruptTest says that the test does not change
the repeater’s state. However, the text also says that a
rptrHealth trap will be sent. Later on, the description of
the rptrHealth trap indicates that the trap is sent only
when the status of the repeater changes. One response
suggested that any test implicitly changes the repeater’s
state. Another response suggested that the rptrHealth

trap is supposed to be sent only if the test actually caused
a change in the repeater’s state (e.g., if it found a problem
in the repeater). Another response alluded to the original
IEEE draft, suggesting that the trap would be used to
mimic the confirmed nature of CMIP actions; the trap is
used to inform the management station when the test is
completed. It was then pointed out traps are not reliably
transmitted, plus, if two managers run the same test at
about the same time, each management station would
get the trap indicating the completion of its own test and

that of the other management station. A final suggestion
was that the description of the trap be changed.

A question was raised about why there is no object in
the Repeater MIB to indicate the current state of a port
or link. It was pointed out that a link integrity object
will be in the MAU MIB.

IDPR Working Group

Submissions: idpr-wg@bbn.com

On December 31, 1992, a notice was posted that the IDPR
MIB is being updated and a new Internet-Draft would be
posted shortly.

On January 4 and 5, 1993, a general discussion on
the structure of the MIB took place. Some of the salient
points of that discussion were:

� A PG to VG map was proposed. One area of
concern was whether there should be a PG-to-VG
or VG-to-PG map. The former was preferred as
some people indicated a preference for Physical over
Virtual models.

� Some editorial ambiguities were pointed out, and
corrections proposed.

� The use of separate tables for different address
types was discussed. One person suggested the use
of a mechanism where any address type could be
represented in the address field. A second person
indicated a preference for having explicit ASN.1
descriptions for each data type in the MIB and not
leaving it up to an application to figure out what
format some particular data item is.

� The issue of whether certain management opera-
tions should be reflected as changes to the config-
uration file, or immediate changes to the state of the
router, was discussed.

� In addition to this, the issue of how to specify the
syntax for configuration files was discussed. An ob-
jection to explicitly including this syntax in the MIB
specification was raised, though a DisplayString

could be used, allowing agent-specific syntaxes.

IDRP for IP Working Group

Submissions: idrp-for-ip@merit.edu

At the Washington DC IETF meeting, the chair asked
for volunteers to work on the MIB. This working group
can be expected to start development of a MIB shortly.

VOLUME 2, NUMBER 1 JANUARY/FEBRUARY, 1993



The Simple Times 15

IPLPDN Working Group

Submissions: iplpdn@nri.reston.va.us

No traffic to report.

IS-IS Working Group

Submissions: isis@merit.edu

No traffic to report.

NOCtools Working Group

Submissions: noctools@merit.edu

On January 11, 1993, an announcement was posted that
the IESG had approved the latest NOCTools document
for publication as an Informational RFC.

OSPF Working Group

Submissions: ospfigp@gated.cornell.edu

No traffic to report.

PPP Working Group

Submissions:iietf-ppp@ucdavis.edu

No traffic to report.

RIP Working Group

Submissions: ietf-rip@xylogics.com

On January 5, 1993, an announcement was posted
indicating that the MIB for RIP version 2 was published
as RFC 1389.

On January 12, 1993, an announcement was posted
indicating that the RIP version 2 working group was
being terminated as it had finished the work for which
it was chartered (development of the MIB, among other
things). The mailing list will remain in existence as a
forum for implementors.

TCP Client Identity Protocol

Submissions: ident@nri.reston.va.us

The Identification MIB was published as RFC 1414.

Remote Monitoring (RMON) MIB Working Group

Submissions: rmonmib@jarthur.claremont.edu

The working group’s mail address has been changed.
Note the new address above.

A brief discussion of the performance of token-ring
networks with “lots” of bridges between source and
destination occurred. This had to do with the efficiency
of RIF field processing.

On December 29, 1992, two questions were posted on
implementation issues for RFC 1271: First, comments
for the statistics group indicate that the statistics start
at 0 when entries in the tables are created. It was pointed
out that this contradicts the notion that Counters in
SNMP do not have a specific starting value. Some of the
discussion centered on whether the agent or the manager
station should maintain baseline values. One message
said that Channels might be used as data sources for the
various tables. If and when this happens, the counters
in the tables will not be deltas on a single base value,
but completely different values. There was no resolution
to this issue on the mailing list. Second, when rows are
under creation, it is not clear what the proper response of
the agent should be when get or get-next requests are
received for the row. Both not having the row available in
the operations’ MIB view and using place-holder values
were suggested as responses. It was pointed out that the
former method would not cause problems to management
stations since management stations must be able to
handle missing objects. It was also pointed out that
providing proper DEFVALs for all objects that need them,
which is good MIB design, would eliminate this problem
since there would always be a correct value to return
for any object. Some of the objects cannot have DEFVALs

since they would contain values that are known only at
run-time and cannot be known to the MIB writer (one
example is hostTopNControlHostIndex).

The discussion on what value to start counters at
evolved into a discussion on whether Channels were
going to be added to the MIB or not, and a general
discussion on what valid sources for data were. One
note asked whether a repeater port can be a source, and
if so how to identify that port since repeater ports are
identified by group and port numbers in the Repeater
MIB.

Consensus was called for on a couple of issues: the
simplified RingStationOrderTable and not having a
history of RingStationOrderTables. There was no
dissent.

A question was asked about how to maintain the count
of ringStationDuplicateAddresses. One response was
that the the Error Code subvector of the Report Active
Monitor Error MAC frame can be used for detecting

VOLUME 2, NUMBER 1 JANUARY/FEBRUARY, 1993



The Simple Times 16

duplicate addresses. If this subvector is set to 0x0003
then a Duplicate address is detected.

A relatively short question about RMON Filter Groups
was asked: if a filter is set up then does that filter apply to
the packet capture group only or does it apply to all other
groups? There was a large discussion. Most responses
indicated that filters apply only to the packet capture
group. One response said that only in early implemen-
tations are the Statistics groups attached to ifTable

entries, thereby limiting their input to unfiltered packet
streams. Eventually, statistics groups could be attached
to channels, and channels are filterable.

This discussion briefly evolved into a discussion about
having channels being the data source for other channels.
It was pointed out that this was discussed earlier and
rejected since changing channels simply connects filters
together, which can always be done on a single channel.

Several announcements were posted to the list. A
paper for the January 1993 USENIX conference on
the Berkeley Packet Filter was announced. It is
available for anonymous FTP from ftp.ee.lbl.gov as
bpf-usenix93.ps.Z.

SNMP Security Working Group

Submissions: snmp-sec-dev@tis.com

The main activity of the SNMP Security working group
has been the upgrading of the original SNMP Security
RFCs (RFCs 1351, 1352, and 1353) for the SNMPv2
effort.

SNMPv2 Working Group

Submissions: snmp2@thumper.bellcore.com

A question was asked about where the version number
in the SNMP packet was changed for SNMPv2. It was
pointed out that the SNMPv2 packet does not have
a version number and that the two packets can be
distinguished by their different ASN.1 tags.

A discussion was held on the upgrading of MIB-II to
SNMPv2 standards and conventions. Some people asked
whether this would be done, and if so when and how. The
basic resolution was that MIB-II would be upgraded in
a “group-by-group” manner after the SNMPv2 work is
completed. At the same time, it was pointed out that
work needs to be done to revise parts of MIB-II to reflect
the latest implementation and operational experience.

A question was raised whether compatibility with
existing MIBs is a requirement that constrains the
SNMPv2 effort or not. A side point was made that
standard MIBs are not that important since it is the

device or enterprise-specific MIBs that provide real
manageability.

The question of why a lot of SNMP statistics were
removed was asked. The answer was that these statistics
did not provide useful information and were simply a
burden on agents.

A proposal to change a part of the introductory text of
the SNMPv2 document was made. This was moved to
the security group.

The working group considered having a special meet-
ing in December to finish its work. This meeting was not
held; the working group decided that it could complete
its work via electronic mail.

An issue, originally raised on the mailing list before the
Washington DC IETF meeting, was brought back. The
possible problem was that for certain types of requests,
an agent might need some “thinking” time before it could
complete or refuse the request. It was pointed out that
this is a problem for manager stations in timing-out and
retransmitting requests. Is the lack of response due to
the agent thinking or the request or response getting
lost? The original note stressed that this could be a
severe problem for set requests. One suggested solution
was to solve the problem by MIB design (adding addition-
al variables and semantics). Other suggestions included
use of multiple parties, extending the RowStatus textual
convention, and so on. Several people pointed out that
this might be a small problem and the effort to fix it might
be out of proportion to the problem being fixed. Use of
“cute mibs” was decried as being unappealing. Other
suggestions were to generate a “completion” trap, have
a special “completion” status variable which could be
polled, or reverse the normal manager/agent relationship
and have the agent set a variable in the manager that
indicates completion. There were many comments to
the effect that, whatever the solution is, it is important
to keep it simple. This prompted a response which
pointed out that the initial premise of SNMP was that
it was interim until a better solution was developed
and that SNMP has lost its interim status, implying
that complexity might be acceptable now. This all got
subsumed in the great “Spatial/Temporal” discussion.

A general issue was pointed out, that certain MIB op-
erations have spatial and temporal aspects to them. For
example, setting variables in configuration NV-storage
versus running memory. Some general solutions were
offered, such as extending the OID space by adding such
spatial and temporal information; the other proposal
was to include the needed information in the Party
and access control tables. The former proposal had
the property that each variable-binding identified its
own time and space contexts. It was suggested that
this might be an implementation nightmare. One post

VOLUME 2, NUMBER 1 JANUARY/FEBRUARY, 1993



The Simple Times 17

claimed that parties and the table were for security,
while the issue under discussion was not a security issue;
the two are different and should be solved by different
methods. A rather nasty exchange then ensued. This
was a particularly amusing exchange to watch. It was
complete with offerings to resign by one of the working
group’s chairs, insinuations that people’s motives were
sinister, lawyerly discussions on the scope of working
group charters and historical revisionism. All this
while keeping pretense of discussing architectural versus
implementation issues and protestations that the parties
to the exchange really were all working together to
produce the best technology. In short, the true technical
content was minimized. The chair of the working group
pointed out that the proposal that used OIDs to contain
spatial and temporal information was more in the nature
of an interesting approach and did not have enough detail
to warrant being called a proposal. This conversation
was also carried out on the SNMP Security working
group’s mailing list.

As reported in an earlier edition of The Simple Times,
the minutes of the Washington DC IETF meeting were
posted to the list. A question as to why the Set2Default
and modified get-bulk proposals were not discussed.
It was reported that there was no time at the meeting
and that discussion would continue on the mailing list,
with a resolution deadline of December 4, 1992. Several
minor problems with the minutes were pointed out and
a revised version was posted.

After much discussion, the chair asked for consensus
on not adopting Set2Default. There was no objection.

The chair asked for consensus on not adopting the
Modified get-bulk proposal. Some objections were
stated, i.e., get-bulk should return only data that was
asked for. Additional data might imply additional kernel
requests, larger PDUs, more ASN encoding/decoding and
so on. These were not seen as compelling reasons to
adopt the modifications (similar ones were rejected at
the IETF meeting). It was pointed out that the increase
in efficiency is at best marginal. Argument raged for
a while about who was better at performing simple
arithmetic and who had the better model of operations
and likely use to support their claim that get-bulk
needed modification or not. Alternative modifications
were also proposed, all rejected. In the end, while it was
agreed by all that get-bulk is not quite as efficient as
it could be, get-bulk stood as originally proposed, its
efficiency being deemed good enough most of the time.

A proposal was made that the MIB references in the
AGENT-CAPABILITIES macro need to include MIB version
information in order to identify which version of a MIB
is supported by an agent. This was adopted. A similar
mechanism was also adopted for the MODULE-COMPLIANCE

macro.
A proposal was made for allowing a deletion function

with assertions on row contents. There was little support
for this proposal and the chair called for consensus to
drop this proposal. One person objected to dropping
it, feeling that lack of support for the proposal is not
a sufficient reason.

A concern was raised that when creating rows, it might
not be possible for the agent to check to see if all needed
data are present and consistent because of the ordering
of the variables in the PDU. This was pointed out to be
a non-problem since the protocol defines a conceptual
two-phase process, wherein the data are first validated,
and then the actual set occurs. An implementor also
offered a three-step process, where the variables in the
set are first checked individually (correct syntax and
range), and then checked as a group for consistency.

The SNMP Security work has caused some changes
to two SNMPv2 documents. Brief descriptions of the
changes were posted. An objection was made that they
represent changes to the SNMPv2 work without the con-
sensus of the SNMPv2 working group. This discussion
re-started the usual finger-pointing seen earlier with
the spatial/temporal discussion. Fortunately, this was
averted when one of the parties learned about time zones.

A discussion on the undoFailed return code was held.
This was started by the suggestion that a requirement
be made that all variable-bindings for a particular row
appear contiguously in a PDU. This particular idea
was discarded earlier by the working group. The
relation to undoFailed had to do with figuring out the
meanings of errors when it is returned. One person
pointed out that undoFail should never happen since
a reasonable agent would validate everything first,
preventing an undo from ever occurring. This person
also pointed out that if you cannot rely on “doing”
changes, you cannot rely on “undoing” them. The
suggestion was made to replace the undoFailed code
with agentHasJustShotItselfInTheHead. The fact that
an undo should never occur was generally recognized,
though undoFailed was kept in the realization that not
all agents would be on systems where the proper locking
and synchronization primitives would be available. A
secondary discussion suggested removing undoFailed,
but keeping commitFailed, on the basis that undoFailed
ought never occur. It was claimed that the two were
a package deal and both should be kept. This claim
was disputed, but it was pointed out that having a
commitFailed implied a two-phase commit algorithm,
which required an undoFailed. The chair suggested that
since no bug has been demonstrated in the error codes
under discussion, they be left intact.

VOLUME 2, NUMBER 1 JANUARY/FEBRUARY, 1993



The Simple Times 18

A proposal was made to add an additional value to
the RowStatus textual convention. This value would
be changeAndGo. A row’s status object would be set to
this value when the manager wished to make changes
to existing instances of the row. The proposal suggested
that this value would help managers resolve situations
where one manager is in the process of reading and
then changing values in the row while another manager
deletes the row. The proposal suggested that the
first manager would set the row’s status column to
changeAndGo and, if the row had been deleted before the
set operation took place, an inconsistentValue error
would be reported on the status column. A response
pointed out that setting the status column to active would
have the same effect and that an additional value was
not needed for RowStatus. No further discussion took
place. Furthermore, it was ruled out-of-order since the
deadline had been passed and the proposal did not fix a
clearly stated and widely agreed upon bug.

A proposal for bringing back the row creation and
deletion PDUs was made. One reason offered was the
complexity of the so-called “RMON polka”. It was pointed
out that this issue was discussed for quite some time at
the IETF meeting and that the consensus of the group
was that these PDUs did not solve the problem. The
chair ruled continued discussion out of order unless a
bug with RowStatus was found. The chair was ignored
amid insinuations that attempts were being made to
rubber stamp the original SMP proposals. Naturally,
such accusations were forcefully denied and another
series of messages flowed back and forth consuming
bandwidth and patience and producing nothing useful.
Eventually, technology crept back into the discussion
and a suggestion was made to refine the wording of
RowStatus to address the lingering concerns or issues
that the creation and deletion operations were meant to
deal with.

One of the continuing problems was the need to
ascertain a valid instance-identifier to use when creating
rows (sometimes referred to as the “take a stab in
the dark” problem). A suggestion to allow agents to
return different values than were in the set request
was made. One alternative suggested was to define a
MIB object that returned a unique value every time a
get operation was issued against it. In order to put the
problem in perspective, a proposed list of requirements
that any solution must address was posted. This list
also compared the RowStatus and create/delete PDU
approaches. This list received some discussion. One
message noted that some of the problems that create and
delete are alleged to solve are, in fact, general problems
with set operation and if a solution is developed, it
should be a general solution.

The chair called for consensus that create/delete PDUs
were not to be adopted. This brought even more discus-
sion than in the past. One message pointed out that
while create and delete do not solve all problems with
row creation and destruction, neither does RowStatus.
Those backing the proposal claimed that the group had
consensus that create and delete solved 95% of the
problems. Many messages agreed with the chair’s call.
The chair made another call. One argument was that
RowStatus adds state; it was pointed out that this does
not, in fact, add state to the protocol, merely the MIBs,
which already have state. Another claim was that only
very wide tables needed RowStatus; for narrow tables it is
an excessive burden; however, the burden of supporting
multiple row-creation methods was also claimed to be
the heavier.

The conversation then turned back to refining and
updating RowStatus. One issue that needed to be
addressed was timeouts in some of the states. Many
of these issues were addressed by making the wording
clearer and more explicit. Several messages discussed
the need to have a single method of creating and deleting
rows. Having unique methods for each row was viewed
as making management overly complex. It was also
pointed out that RowStatus does not bar other methods
from being devised. One person pointed out that there
already are many methods of row creation in the field
today and likely to stay there in the future. Having a
single method in SNMPv2 would not be as big a win as
would first seem.

A new version of RowStatus was posted that addressed
several of the issues. This proposal then received
continued discussion. The create/delete issue was still
brought up. This issue was rejected with an explanation
of how the problems that only create/delete could fix
are, in fact, fixable via mechanisms already available.
Several typographical errors in the revised RowStatus

text were identified and corrected. Clarifications to text
covering explicit descriptions of the legal and illegal state
transitions and that some tables might not allow setting
when the row is active were proposed and accepted.
Addition of text covering the effects of access control was
also proposed and accepted.

Another version of RowStatus was posted, reflecting
the concerns and changes to date. Including a state tran-
sition table in the RowStatus description was proposed
and adopted. Having a table was felt to be clear and
unambiguous. After proposing the general idea of a state
table, there was extensive discussion on the exact states,
actions, and transitions that the table would have.

One significant concern was the apparent inability
to do "single-PDU" row-creations. This was solved
by using two different RowStatus values: createAndGo

VOLUME 2, NUMBER 1 JANUARY/FEBRUARY, 1993



The Simple Times 19

and createAndWait. The former would immediately
instantiate the row while the latter would let the man-
ager incrementally build the row and then instantiate
it (the original RowStatus approach). This received
much support. Consensus was called for on the revised
RowStatus. It was obtained. Naturally, as more people
reviewed the work, there was more discussion after the
consensus.

A query was made as to whether there would be a
SNMP2 technology demo at the 93 Spring INTEROP. The
reply is that no official demos were planned, however,
individual vendors might have their own demos and the
upcoming IFIP WG6.6 Symposium would have a demo.

Most significantly, the working group’s chair called
for the final consensus of the working group. This
brought out a minor flurry of last minute minor changes.
Otherwise, consensus was reached and it seems that the
working group has accomplished its objective. Naturally,
even after the call, discussion continued.

A suggestion was made to add an additional clause to
the OBJECT-TYPE macro. This clause, the HELP clause,
would be used by management station vendors as a place
where they can add additional help information. The
proposal pointed out that the text in the DESCRIPTION

clause is usually written for developers and implemen-
tors, not for network operators, and the latter may find
the text difficulty to understand. The only response to
the proposal pointed out that, while the idea was a useful
one, had merit, was similar to ideas that were previously
discussed and should be looked at in the future, the
proposal was made after the group’s deadline for new
proposals.

An error in the definition of the DisplayString textual
convention was pointed out. They syntax should have
a SIZE constraint. This correction was accepted by
the Working Group. As an aside, it was also pointed
out that many implementations do not properly format
a DisplayString according to the rules for NVT. It
was suggested that additional text be added to the
DisplayString definition, stating what is and is not
legal in NVT. It was also pointed out that it is legal for
the SYNTAX clause in an OBJECT-TYPE macro to specify a
smaller SIZE than is in the TEXTUAL-CONVENTION.

As a result of implementation experience, it was
determined that a new error code is needed for the
set operation. This code is needed for the case where
an attempt is made to create a new instance of a
variable and, for some reason, that particular instance
cannot be created, because the name would conflict with
existing information in the agent (e.g., trying to create
an access control entry for a party that doesn’t exist).
The proposed new error code is inconsistentName and
indicates that the variable doesn’t exist, the agent is

able to create instances of the corresponding object type,
but the name in the variable-binding is inconsistent
with the current state of the agent’s MIB. One response
suggested overloading the meaning of notWritable. This
was rejected as the meaning of the notWritable error code
would become ambiguous.

A message correcting the location of the work-
ing group’s archive was posted to the list. The
archive is on thumper.bellcore.com in the file
pub/davin/snmp2-archive.

Trunk MIB Working Group

Submissions: trunk-mib@saffron.acc.com

On January 8, 1993, two announcements were posted to
the IETF mailing list. These announcements were for
new Internet Drafts for the DS1/E1 and DS3/E3 MIBs.
These versions of the MIBs incorporate comments made
during their Last Call period.

UPS MIB Working Group

Submissions: ups-mib@cs.utk.edu

The results of a survey of the implementability of
variables in the MIB was posted to the list.

X.25 MIB Working Group

Submissions: x25mib@dg-rtp.dg.com

On January 11, 1993, a new version of the X.25 Mul-
tiprotocol Interconnect MIB was posted to the mailing
list.

Activities Calendar

� INTEROP 93 Spring

March 8–12, Washington, DC

For information: +1 415–941–3399

� 26th Meeting of the IETF

March 29–April 2, Columbus, OH

For information: +1 703–620–8990

� IFIP Symposium on Network Management

April 18–23, San Francisco, CA

For information: +1 415–512–1316

VOLUME 2, NUMBER 1 JANUARY/FEBRUARY, 1993



The Simple Times 20

Publication Information

The Simple Times is published with a lot of help from
the SNMP community.

Publication Staff

Coordinating Editor:
Dr. Marshall T. Rose Dover Beach Consulting, Inc.

Featured Columnists:
Dr. Jeffrey D. Case SNMP Research, Inc.

University of Tennessee
Frank J. Kastenholz FTP Software, Inc.

Keith McCloghrie Hughes LAN Systems, Inc.
David T. Perkins SynOptics Communications, Inc.

Steven L. Waldbusser Carnegie Mellon University

Contact Information

Postal: The Simple Times
c/o Dover Beach Consulting, Inc.
420 Whisman Court
Mountain View, CA 94043–2186

Tel: +1 415–968–1052
Fax: +1 415–968–2510

E-mail: st-editorial@simple-times.org

ISSN: 1060–6068

Submissions

The Simple Times solicits high-quality articles of tech-
nology and comment. Technical articles are refereed to
ensure that the content is marketing-free. By definition,
commentaries reflect opinion and, as such, are reviewed
only to the extent required to ensure commonly-accepted
publication norms.

The Simple Times also solicits terse announcements
of products and services, publications, and events. These
contributions are reviewed only to the extent required to
ensure commonly-accepted publication norms.

Submissions are accepted only in electronic form. A
submission consists of ASCII text. (Technical articles
are also allowed to reference encapsulated PostScript
figures.) Submissions may be sent to the contact address
above, either via electronic-mail or via magnetic media
(using either 8-mm tar tape, 1

4 -in tar cartridge-tape, or
3 1

2 -in MS-DOS floppy-diskette).
Each submission must include the author’s full name,

title, affiliation, postal and electronic mail addresses,
telephone, and fax numbers. Note that by initiating
this process, the submitting party agrees to place the
contribution into the public domain.

Subscriptions

The Simple Times is available via electronic-mail in
three editions: PostScript, MIME (the multi-media 822
mail format), and richtext (a simple page description
language). For more information, send a message to

st-subscriptions@simple-times.org

with a Subject line of

help

In addition, The Simple Times has numerous hard-
copy distribution outlets. Contact your favorite SNMP
vendor and see if they carry it. If not, contact the
publisher and ask for a list. (Communications via e-mail
or fax are preferred).

VOLUME 2, NUMBER 1 JANUARY/FEBRUARY, 1993


